【RNN练习】LSTM-火灾温度预测

news2024/11/23 23:30:52
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

前期准备工作

import torch.nn.functional as F
import numpy as np
import pandas as pd
import torch
from torch import nn

1. 导入数据

data = pd.read_csv(r"D:\Personal Data\Learning Data\DL Learning Data\LSTM\woodpine2.csv")
data

在这里插入图片描述

2. 数据可视化

import matplotlib.pyplot as plt
import seaborn as sns

plt.rcParams['savefig.dpi'] = 500 #图片像素
plt.rcParams['figure.dpi'] = 500 #分辨率
fig, ax = plt.subplots(1,3,constrained_layout = True, figsize = (14, 3))

sns.lineplot(data = data["Tem1"], ax = ax[0])
sns.lineplot(data=data['CO 1'], ax = ax[1])
sns.lineplot(data=data["Soot 1"], ax = ax[2])
plt.show()

在这里插入图片描述

dataFrame = data.iloc[:,1:]
dataFrame

在这里插入图片描述

二、构建数据集

1. 数据集预处理

from sklearn.preprocessing import MinMaxScaler

dataFrame = data.iloc[:,1:].copy()
sc = MinMaxScaler(feature_range=(0,1))   #将数据归一化
for i in ['CO 1', 'Soot 1', 'Tem1']:
    dataFrame[i] = sc.fit_transform(dataFrame[i].values.reshape(-1,1))

dataFrame.shape

输出:

(5948, 3)

2. 设置X、y

width_X = 8
width_y = 1

## 取前8个时间段的Tem1、CO 1、Soot 1为X,第9个时间段的Tem1为y。
X = []
y = []

in_start = 0
for _,_ in data.iterrows():
    in_end = in_start + width_X
    out_end = in_end + width_y

    if out_end < len(dataFrame):
        X_ = np.array(dataFrame.iloc[in_start:in_end, ])
        y_ = np.array(dataFrame.iloc[in_end: out_end, 0])

        X.append(X_)
        y.append(y_)
    in_start += 1

X = np.array(X)
y = np.array(y).reshape(-1,1,1)
X.shape, y.shape

输出:

((5939, 8, 3), (5939, 1, 1))

检查数据集是否有空值

#检查数据集是否有空值
print(np.any(np.isnan(X)))
print(np.any(np.isnan(y)))

3. 划分数据集

X_train = torch.tensor(np.array(X[:5000]), dtype=torch.float32)
y_train = torch.tensor(np.array(y[:5000]), dtype=torch.float32)
 
X_test  = torch.tensor(np.array(X[5000:]), dtype=torch.float32)
y_test  = torch.tensor(np.array(y[5000:]), dtype=torch.float32)
X_train.shape, y_train.shape

输出:

(torch.Size([5000, 8, 3]), torch.Size([5000, 1, 1]))
from torch.utils.data import TensorDataset, DataLoader
train_dl = DataLoader(TensorDataset(X_train, y_train),
                      batch_size=64, 
                      shuffle=False)
test_dl = DataLoader(TensorDataset(X_test, y_test),
                     batch_size=64, 
                     shuffle=False)

三、模型训练

1. 构建模型

class model_lstm(nn.Module):
    def __init__(self):
        super(model_lstm, self).__init__()
        self.lstm0 = nn.LSTM(input_size=3 ,hidden_size=320, 
                             num_layers=1, batch_first=True)
        self.lstm1 = nn.LSTM(input_size=320 ,hidden_size=320, 
                             num_layers=1, batch_first=True)
        self.fc0 = nn.Linear(320, 1)
        # self.fc1 = nn.Sequential(nn.Linear(300, 2))
 
    def forward(self, x):
        #如果不传入h0和c0,pytorch会将其初始化为0
        out, hidden1 = self.lstm0(x) 
        out, _ = self.lstm1(out, hidden1) 
        out = self.fc0(out) 
        return out[:, -1:, :]   #取2个预测值,否则经过lstm会得到8*2个预测 
model = model_lstm()
model
 

输出:

model_lstm(
  (lstm0): LSTM(3, 320, batch_first=True)
  (lstm1): LSTM(320, 320, batch_first=True)
  (fc0): Linear(in_features=320, out_features=1, bias=True)
)
model(torch.rand(30,8,3)).shape

输出:

torch.Size([30, 1, 1])

2.定义训练函数


# 训练循环
import copy
def train(train_dl, model, loss_fn, opt, lr_scheduler=None):
    size = len(train_dl.dataset)  
    num_batches = len(train_dl)   
    train_loss = 0  # 初始化训练损失和正确率
    
    for x, y in train_dl:  
        x, y = x.to(device), y.to(device)
        
        # 计算预测误差
        #pred = model(x)
        pred = model(x)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距
        
        # 反向传播
        opt.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        opt.step()       # 每一步自动更新
        
        # 记录loss
        train_loss += loss.item()
    if lr_scheduler is not None:
        lr_scheduler.step()
        print("learning rate = ", opt.param_groups[0]['lr'])
    train_loss /= num_batches
    return train_loss

3. 定义测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目
    test_loss = 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for x, y in dataloader:
            
            x, y = x.to(device), y.to(device)
            
            # 计算loss
            y_pred = model(x)
            loss        = loss_fn(y_pred, y)
            test_loss += loss.item()
        
    test_loss /= num_batches
    return test_loss

4. 正式训练模型

#设置GPU训练
import torch
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

输出:

device(type='cuda')
#训练模型
model = model_lstm()
model = model.to(device)
loss_fn    = nn.MSELoss() # 创建损失函数
learn_rate = 1e-1   # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate,weight_decay=1e-4)
epochs     = 150
train_loss = []
test_loss  = []
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt,epochs, last_epoch=-1) 
best_val =[0, 1e5]
for epoch in range(epochs):
    model.train()
    epoch_train_loss = train(train_dl, model, loss_fn, opt, lr_scheduler)
 
    model.eval()
    epoch_test_loss = test(test_dl, model, loss_fn)
    if best_val[1] >  epoch_test_loss:
        best_val =[epoch, epoch_test_loss]
        best_model_wst = copy.deepcopy(model.state_dict())
 
    train_loss.append(epoch_train_loss)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_loss:{:.6f}, Test_loss:{:.6f}')
    print(template.format(epoch+1, epoch_train_loss,  epoch_test_loss))
print("*"*20, 'Done', "*"*20)

输出:

learning rate =  0.09998903417374227
Epoch: 1, Train_loss:0.001263, Test_loss:0.012446
learning rate =  0.09995614150494292
Epoch: 2, Train_loss:0.014234, Test_loss:0.012052
learning rate =  0.09990133642141358
Epoch: 3, Train_loss:0.013899, Test_loss:0.011644
learning rate =  0.09982464296247522
Epoch: 4, Train_loss:0.013514, Test_loss:0.011209
learning rate =  0.09972609476841367
Epoch: 5, Train_loss:0.013065, Test_loss:0.010731
learning rate =  0.0996057350657239
Epoch: 6, Train_loss:0.012539, Test_loss:0.010204
learning rate =  0.09946361664814941
Epoch: 7, Train_loss:0.011923, Test_loss:0.009617
learning rate =  0.09929980185352524
Epoch: 8, Train_loss:0.011208, Test_loss:0.008970
learning rate =  0.09911436253643444
Epoch: 9, Train_loss:0.010392, Test_loss:0.008263
learning rate =  0.09890738003669028
Epoch:10, Train_loss:0.009476, Test_loss:0.007508
learning rate =  0.098678945143658
Epoch:11, Train_loss:0.008475, Test_loss:0.006716
learning rate =  0.09842915805643156
Epoch:12, Train_loss:0.007412, Test_loss:0.005910
learning rate =  0.09815812833988291
Epoch:13, Train_loss:0.006323, Test_loss:0.005112
learning rate =  0.09786597487660335
Epoch:14, Train_loss:0.005249, Test_loss:0.004352
learning rate =  0.09755282581475769
Epoch:15, Train_loss:0.004237, Test_loss:0.003654
learning rate =  0.09721881851187407
Epoch:16, Train_loss:0.003325, Test_loss:0.003036
learning rate =  0.0968640994745946
Epoch:17, Train_loss:0.002540, Test_loss:0.002509
learning rate =  0.09648882429441258
Epoch:18, Train_loss:0.001895, Test_loss:0.002082
learning rate =  0.09609315757942503
Epoch:19, Train_loss:0.001388, Test_loss:0.001740
learning rate =  0.09567727288213004
Epoch:20, Train_loss:0.001005, Test_loss:0.001479
learning rate =  0.09524135262330098
Epoch:21, Train_loss:0.000725, Test_loss:0.001283
learning rate =  0.09478558801197065
Epoch:22, Train_loss:0.000526, Test_loss:0.001138
learning rate =  0.09431017896156073
Epoch:23, Train_loss:0.000388, Test_loss:0.001033
learning rate =  0.09381533400219318
Epoch:24, Train_loss:0.000294, Test_loss:0.000955
learning rate =  0.09330127018922194
Epoch:25, Train_loss:0.000230, Test_loss:0.000900
learning rate =  0.09276821300802535
Epoch:26, Train_loss:0.000188, Test_loss:0.000859
learning rate =  0.09221639627510077
Epoch:27, Train_loss:0.000159, Test_loss:0.000829
learning rate =  0.09164606203550499
Epoch:28, Train_loss:0.000139, Test_loss:0.000806
learning rate =  0.09105746045668521
Epoch:29, Train_loss:0.000126, Test_loss:0.000789
learning rate =  0.09045084971874738
Epoch:30, Train_loss:0.000117, Test_loss:0.000775
learning rate =  0.08982649590120982
Epoch:31, Train_loss:0.000110, Test_loss:0.000765
learning rate =  0.089184672866292
Epoch:32, Train_loss:0.000105, Test_loss:0.000755
learning rate =  0.08852566213878947
Epoch:33, Train_loss:0.000102, Test_loss:0.000749
learning rate =  0.08784975278258783
Epoch:34, Train_loss:0.000100, Test_loss:0.000743
learning rate =  0.08715724127386973
Epoch:35, Train_loss:0.000098, Test_loss:0.000738
learning rate =  0.08644843137107058
Epoch:36, Train_loss:0.000096, Test_loss:0.000731
learning rate =  0.08572363398164018
Epoch:37, Train_loss:0.000095, Test_loss:0.000727
learning rate =  0.0849831670256683
Epoch:38, Train_loss:0.000094, Test_loss:0.000724
learning rate =  0.08422735529643445
Epoch:39, Train_loss:0.000094, Test_loss:0.000720
learning rate =  0.08345653031794292
Epoch:40, Train_loss:0.000093, Test_loss:0.000717
learning rate =  0.0826710301995053
Epoch:41, Train_loss:0.000093, Test_loss:0.000712
learning rate =  0.0818711994874345
Epoch:42, Train_loss:0.000092, Test_loss:0.000708
learning rate =  0.08105738901391554
Epoch:43, Train_loss:0.000092, Test_loss:0.000705
learning rate =  0.08022995574311877
Epoch:44, Train_loss:0.000092, Test_loss:0.000701
learning rate =  0.07938926261462367
Epoch:45, Train_loss:0.000092, Test_loss:0.000698
learning rate =  0.07853567838422161
Epoch:46, Train_loss:0.000091, Test_loss:0.000694
learning rate =  0.07766957746216722
Epoch:47, Train_loss:0.000091, Test_loss:0.000692
learning rate =  0.07679133974894985
Epoch:48, Train_loss:0.000091, Test_loss:0.000688
learning rate =  0.07590135046865654
Epoch:49, Train_loss:0.000091, Test_loss:0.000683
learning rate =  0.07500000000000002
Epoch:50, Train_loss:0.000091, Test_loss:0.000681
learning rate =  0.07408768370508578
Epoch:51, Train_loss:0.000091, Test_loss:0.000676
learning rate =  0.07316480175599312
Epoch:52, Train_loss:0.000090, Test_loss:0.000672
learning rate =  0.0722317589592464
Epoch:53, Train_loss:0.000090, Test_loss:0.000668
learning rate =  0.07128896457825366
Epoch:54, Train_loss:0.000090, Test_loss:0.000666
learning rate =  0.07033683215379004
Epoch:55, Train_loss:0.000090, Test_loss:0.000662
learning rate =  0.06937577932260518
Epoch:56, Train_loss:0.000090, Test_loss:0.000658
learning rate =  0.06840622763423394
Epoch:57, Train_loss:0.000090, Test_loss:0.000654
learning rate =  0.0674286023660908
Epoch:58, Train_loss:0.000090, Test_loss:0.000650
learning rate =  0.0664433323369292
Epoch:59, Train_loss:0.000090, Test_loss:0.000646
learning rate =  0.06545084971874741
Epoch:60, Train_loss:0.000090, Test_loss:0.000643
learning rate =  0.06445158984722361
Epoch:61, Train_loss:0.000090, Test_loss:0.000639
learning rate =  0.06344599103076332
Epoch:62, Train_loss:0.000090, Test_loss:0.000635
learning rate =  0.06243449435824276
Epoch:63, Train_loss:0.000089, Test_loss:0.000631
learning rate =  0.06141754350553282
Epoch:64, Train_loss:0.000089, Test_loss:0.000627
learning rate =  0.060395584540888
Epoch:65, Train_loss:0.000089, Test_loss:0.000623
learning rate =  0.05936906572928627
Epoch:66, Train_loss:0.000089, Test_loss:0.000620
learning rate =  0.05833843733580514
Epoch:67, Train_loss:0.000089, Test_loss:0.000615
learning rate =  0.05730415142812061
Epoch:68, Train_loss:0.000089, Test_loss:0.000612
learning rate =  0.056266661678215237
Epoch:69, Train_loss:0.000089, Test_loss:0.000608
learning rate =  0.055226423163382714
Epoch:70, Train_loss:0.000089, Test_loss:0.000604
learning rate =  0.0541838921666158
Epoch:71, Train_loss:0.000089, Test_loss:0.000601
learning rate =  0.0531395259764657
Epoch:72, Train_loss:0.000090, Test_loss:0.000597
learning rate =  0.05209378268646001
Epoch:73, Train_loss:0.000090, Test_loss:0.000593
learning rate =  0.051047120994167874
Epoch:74, Train_loss:0.000090, Test_loss:0.000590
learning rate =  0.050000000000000024
Epoch:75, Train_loss:0.000090, Test_loss:0.000587
learning rate =  0.048952879005832194
Epoch:76, Train_loss:0.000090, Test_loss:0.000583
learning rate =  0.04790621731354004
Epoch:77, Train_loss:0.000090, Test_loss:0.000579
learning rate =  0.04686047402353437
Epoch:78, Train_loss:0.000090, Test_loss:0.000576
learning rate =  0.045816107833384245
Epoch:79, Train_loss:0.000090, Test_loss:0.000573
learning rate =  0.044773576836617354
Epoch:80, Train_loss:0.000091, Test_loss:0.000569
learning rate =  0.04373333832178481
Epoch:81, Train_loss:0.000091, Test_loss:0.000567
learning rate =  0.042695848571879455
Epoch:82, Train_loss:0.000091, Test_loss:0.000563
learning rate =  0.0416615626641949
Epoch:83, Train_loss:0.000091, Test_loss:0.000561
learning rate =  0.040630934270713785
Epoch:84, Train_loss:0.000091, Test_loss:0.000558
learning rate =  0.039604415459112044
Epoch:85, Train_loss:0.000092, Test_loss:0.000555
learning rate =  0.03858245649446723
Epoch:86, Train_loss:0.000092, Test_loss:0.000552
learning rate =  0.03756550564175728
Epoch:87, Train_loss:0.000092, Test_loss:0.000550
learning rate =  0.03655400896923674
Epoch:88, Train_loss:0.000093, Test_loss:0.000548
learning rate =  0.03554841015277642
Epoch:89, Train_loss:0.000093, Test_loss:0.000545
learning rate =  0.03454915028125264
Epoch:90, Train_loss:0.000094, Test_loss:0.000543
learning rate =  0.03355666766307085
Epoch:91, Train_loss:0.000094, Test_loss:0.000541
learning rate =  0.03257139763390926
Epoch:92, Train_loss:0.000095, Test_loss:0.000539
learning rate =  0.031593772365766125
Epoch:93, Train_loss:0.000095, Test_loss:0.000538
learning rate =  0.030624220677394863
Epoch:94, Train_loss:0.000096, Test_loss:0.000536
learning rate =  0.02966316784621
Epoch:95, Train_loss:0.000096, Test_loss:0.000535
learning rate =  0.02871103542174638
Epoch:96, Train_loss:0.000097, Test_loss:0.000534
learning rate =  0.02776824104075365
Epoch:97, Train_loss:0.000098, Test_loss:0.000533
learning rate =  0.026835198244006937
Epoch:98, Train_loss:0.000098, Test_loss:0.000532
learning rate =  0.02591231629491424
Epoch:99, Train_loss:0.000099, Test_loss:0.000531
learning rate =  0.024999999999999998
Epoch:100, Train_loss:0.000100, Test_loss:0.000531
learning rate =  0.024098649531343507
Epoch:101, Train_loss:0.000101, Test_loss:0.000530
learning rate =  0.023208660251050187
Epoch:102, Train_loss:0.000102, Test_loss:0.000530
learning rate =  0.02233042253783281
Epoch:103, Train_loss:0.000103, Test_loss:0.000530
learning rate =  0.021464321615778426
Epoch:104, Train_loss:0.000104, Test_loss:0.000530
learning rate =  0.020610737385376356
Epoch:105, Train_loss:0.000105, Test_loss:0.000531
learning rate =  0.019770044256881267
Epoch:106, Train_loss:0.000106, Test_loss:0.000531
learning rate =  0.018942610986084494
Epoch:107, Train_loss:0.000107, Test_loss:0.000532
learning rate =  0.018128800512565522
Epoch:108, Train_loss:0.000108, Test_loss:0.000533
learning rate =  0.01732896980049475
Epoch:109, Train_loss:0.000110, Test_loss:0.000535
learning rate =  0.016543469682057093
Epoch:110, Train_loss:0.000111, Test_loss:0.000536
learning rate =  0.01577264470356557
Epoch:111, Train_loss:0.000112, Test_loss:0.000537
learning rate =  0.015016832974331734
Epoch:112, Train_loss:0.000113, Test_loss:0.000539
learning rate =  0.014276366018359849
Epoch:113, Train_loss:0.000115, Test_loss:0.000541
learning rate =  0.01355156862892944
Epoch:114, Train_loss:0.000116, Test_loss:0.000544
learning rate =  0.012842758726130289
Epoch:115, Train_loss:0.000118, Test_loss:0.000546
learning rate =  0.012150247217412192
Epoch:116, Train_loss:0.000119, Test_loss:0.000549
learning rate =  0.011474337861210548
Epoch:117, Train_loss:0.000120, Test_loss:0.000552
learning rate =  0.010815327133708018
Epoch:118, Train_loss:0.000122, Test_loss:0.000555
learning rate =  0.010173504098790198
Epoch:119, Train_loss:0.000123, Test_loss:0.000557
learning rate =  0.009549150281252639
Epoch:120, Train_loss:0.000124, Test_loss:0.000561
learning rate =  0.008942539543314802
Epoch:121, Train_loss:0.000126, Test_loss:0.000564
learning rate =  0.008353937964495033
Epoch:122, Train_loss:0.000127, Test_loss:0.000567
learning rate =  0.00778360372489925
Epoch:123, Train_loss:0.000128, Test_loss:0.000570
learning rate =  0.007231786991974674
Epoch:124, Train_loss:0.000129, Test_loss:0.000572
learning rate =  0.006698729810778079
Epoch:125, Train_loss:0.000130, Test_loss:0.000575
learning rate =  0.006184665997806824
Epoch:126, Train_loss:0.000131, Test_loss:0.000578
learning rate =  0.005689821038439266
Epoch:127, Train_loss:0.000132, Test_loss:0.000580
learning rate =  0.005214411988029369
Epoch:128, Train_loss:0.000132, Test_loss:0.000582
learning rate =  0.004758647376699034
Epoch:129, Train_loss:0.000133, Test_loss:0.000585
learning rate =  0.004322727117869964
Epoch:130, Train_loss:0.000133, Test_loss:0.000587
learning rate =  0.00390684242057497
Epoch:131, Train_loss:0.000134, Test_loss:0.000588
learning rate =  0.0035111757055874336
Epoch:132, Train_loss:0.000134, Test_loss:0.000590
learning rate =  0.003135900525405428
Epoch:133, Train_loss:0.000135, Test_loss:0.000591
learning rate =  0.002781181488125951
Epoch:134, Train_loss:0.000135, Test_loss:0.000592
learning rate =  0.002447174185242324
Epoch:135, Train_loss:0.000135, Test_loss:0.000593
learning rate =  0.0021340251233966383
Epoch:136, Train_loss:0.000135, Test_loss:0.000594
learning rate =  0.001841871660117095
Epoch:137, Train_loss:0.000135, Test_loss:0.000594
learning rate =  0.0015708419435684464
Epoch:138, Train_loss:0.000135, Test_loss:0.000595
learning rate =  0.0013210548563419857
Epoch:139, Train_loss:0.000135, Test_loss:0.000595
learning rate =  0.0010926199633097212
Epoch:140, Train_loss:0.000135, Test_loss:0.000596
learning rate =  0.0008856374635655696
Epoch:141, Train_loss:0.000135, Test_loss:0.000596
learning rate =  0.0007001981464747509
Epoch:142, Train_loss:0.000135, Test_loss:0.000596
learning rate =  0.0005363833518505835
Epoch:143, Train_loss:0.000135, Test_loss:0.000596
learning rate =  0.0003942649342761118
Epoch:144, Train_loss:0.000135, Test_loss:0.000596
learning rate =  0.0002739052315863355
Epoch:145, Train_loss:0.000135, Test_loss:0.000597
learning rate =  0.0001753570375247815
Epoch:146, Train_loss:0.000135, Test_loss:0.000597
learning rate =  9.866357858642206e-05
Epoch:147, Train_loss:0.000135, Test_loss:0.000597
learning rate =  4.3858495057080846e-05
Epoch:148, Train_loss:0.000135, Test_loss:0.000597
learning rate =  1.0965826257725021e-05
Epoch:149, Train_loss:0.000135, Test_loss:0.000597
learning rate =  0.0
Epoch:150, Train_loss:0.000135, Test_loss:0.000597
******************** Done ********************

四、模型评估

1. LOSS图

#LOSS图
# 支持中文
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
 
plt.figure(figsize=(5, 3),dpi=120)
 
plt.plot(train_loss    , label='LSTM Training Loss')
plt.plot(test_loss, label='LSTM Validation Loss')
 
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

在这里插入图片描述

2. 调用模型进行预测

model.load_state_dict(best_model_wst)
model.to("cpu")
predicted_y_lstm = sc.inverse_transform(model(X_test).detach().numpy().reshape(-1,1))                    # 测试集输入模型进行预测
y_test_1 = sc.inverse_transform(y_test.reshape(-1,1))
y_test_one = [i[0] for i in y_test_1]
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]
 
plt.figure(figsize=(5, 3),dpi=120)
# 画出真实数据和预测数据的对比曲线
plt.plot(y_test_one[:2000], color='red', label='real_temp')
plt.plot(predicted_y_lstm_one[:2000], color='blue', label='prediction')
 
plt.title('Title')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()
 

在这里插入图片描述

3. R2值评估

from sklearn import metrics
"""
RMSE :均方根误差  ----->  对均方误差开方
R2   :决定系数,可以简单理解为反映模型拟合优度的重要的统计量
"""
RMSE_lstm  = metrics.mean_squared_error(predicted_y_lstm_one, y_test_1)**0.5
R2_lstm    = metrics.r2_score(predicted_y_lstm_one, y_test_1)
 
print('均方根误差: %.5f' % RMSE_lstm)
print('R2: %.5f' % R2_lstm)

输出:

均方根误差: 6.53662
R2: 0.85083

五、总结

在数据预测前,数据预处理极为关键,包含数据去重、去空值。在设置迭代次数时,可适量缩小迭代次数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1874167.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用谷歌的colab运行代码初试

前言 最近学习李沐的动手深度学习&#xff0c;使用conda创建并配置环境应用mxnet框架&#xff0c;配置环境、兼容等问题给我折腾坏了。干脆转到谷歌的交互式环境colab进行操作。 不过使用colab的前提是会科学上网。否则连谷歌都用不了。这个科学上网就需要自己解决了。 colab可…

【教程】几种不同的RBF神经网络

本站原创文章&#xff0c;转载请说明来自《老饼讲解-机器学习》www.bbbdata.com 目录 一、经典RBF神经网络1.1.经典径向基神经网络是什么1.2.经典径向基神经网络-代码与示例 二、广义回归神经网络GRNN2.1.广义回归神经网络是什么2.2.广义回归神经网络是什么-代码与示例 三、概率…

dledger原理源码分析系列(一)架构,核心组件和rpc组件

简介 dledger是openmessaging的一个组件&#xff0c; raft算法实现&#xff0c;用于分布式日志&#xff0c;本系列分析dledger如何实现raft概念&#xff0c;以及dledger在rocketmq的应用 本系列使用dledger v0.40 本文分析dledger的架构&#xff0c;核心组件&#xff1b;rpc组…

JavaScript:实现内容显示隐藏(展开收起)功能

一、场景 点击按钮将部分内容隐藏&#xff08;收起&#xff09;&#xff0c;再点击按钮时将内容显示&#xff08;展开&#xff09;出来。 二、技术摘要 js实现实现内容显示隐藏js动态给ul标签添加li标签js遍历数组 三、效果图 四、代码 js_block_none.js代码 var group1 doc…

springboot中使用springboot cache

前言&#xff1a;SpringBoot中使用Cache缓存可以提高对缓存的开发效率 此图片是SpringBootCache常用注解 Springboot Cache中常用注解 第一步&#xff1a;引入依赖 <!--缓存--><dependency><groupId>org.springframework.boot</groupId><artifactId…

【算法刷题 | 动态规划14】6.28(最大子数组和、判断子序列、不同的子序列)

文章目录 35.最大子数组和35.1题目35.2解法&#xff1a;动规35.2.1动规思路35.2.2代码实现 36.判断子序列36.1题目36.2解法&#xff1a;动规36.2.1动规思路36.2.2代码实现 37.不同的子序列37.1题目37.2解法&#xff1a;动规37.2.1动规思路37.2.2代码实现 35.最大子数组和 35.1…

战地战地风云最强的免费加速器 2024低延迟不卡顿加速器推荐

来喽来喽&#xff0c;steam夏季促销它又来喽&#xff0c;战地风云&#xff0c;第一人称射击游戏&#xff0c;而且这次迎来了史低&#xff0c;游戏背景设定为近未来&#xff08;公元2042年&#xff09;&#xff0c;会有动态的天气系统&#xff0c;以及改善后的破坏系统。该作为《…

LLaMA2模型训练加速秘籍:700亿参数效率提升195%!

点击蓝字 关注我们 关注并星标 从此不迷路 计算机视觉研究院 公众号ID &#xff5c; 计算机视觉研究院 学习群 &#xff5c; 扫码在主页获取加入方式 开源地址&#xff1a;https://github.com/hpcaitech/ColossalAI 计算机视觉研究院专栏 Column of Computer Vision Ins…

微服务框架中Nacos的个人学习心得

微服务框架需要学习的东西很多&#xff0c;基本上我把它分为了五个模块&#xff1a; 第一&#xff1a;微服务技术模块 分为三个常用小模块&#xff1a; 1.微服务治理&#xff1a; 注册发现 远程调用 配置管理 网关路由 2.微服务保护&#xff1a; 流量控制 系统保护 熔断降级 服…

【MATLAB源码-第231期】基于matlab的polar码编码译码仿真,对比SC,SCL,BP,SCAN,SSC等译码算法误码率。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 极化码&#xff08;Polar Code&#xff09; 极化码&#xff08;Polar Code&#xff09;是一种新型的信道编码技术&#xff0c;由土耳其裔教授Erdal Arıkan在2008年提出。极化码在理论上被证明能够在信道容量上达到香农极限…

来聊聊nacos

先关注下下方公众号呗&#xff1a; 第1部分&#xff1a;引言 微服务的挑战 尽管微服务架构带来了许多好处&#xff0c;如敏捷性、可扩展性和容错性&#xff0c;但它也带来了一些挑战&#xff0c;特别是在服务发现、配置管理、服务间通信和运维管理方面。这些挑战需要有效的解…

编译调试swift5.7源码

环境&#xff1a; 电脑&#xff1a;apple m1 pro系统&#xff1a;macOS13Xcode: 14.2Cmake: 3.25.1Ninja: 1.11.1sccache: 0.3.3swift代码地址 新建一个文件夹&#xff08;用于存放clone下来的swift源码&#xff09;&#xff0c;然后进入该文件夹。本例中是在终端执行了mkdir…

centos 安装deb格式安装包

背景 研发给了我一个deb包&#xff0c;需要我在centos 这种服务器操作系统上安装... deb包安装一般是使用dpkg -i xxxx.deb 命令&#xff0c;dpkg是Debian类型的系统,但是 通常centos是没有dpkg命令的... 直接就报&#xff1a;bash dpkg 未找到命令... 本来找研发给我编译rp…

Nature子刊 | 基于遥感和U-Net绘制6亿棵树木,并发现过去十年印度农田树木严重减少

题目:Severe decline in large farmland trees in India over the past decade 期刊:Nature Sustainability 论文:https://www.nature.com/articles/s41893-024-01356-0 结果数据: https://rs-cph.projects.earthengine.app/view/tree https://zenodo.org/records/10978…

布尔运算00

题目链接 布尔运算 题目描述 注意点 运算符的数量不超过 19 个布尔表达式由 0 (false)、1 (true)、& (AND)、 | (OR) 和 ^ (XOR) 符号组成算出有几种可使该表达式得出 result 值的括号方法 解答思路 可以使用动态规划根据左右两侧区间不同结果相应组合数量计算得出当前…

Java---Maven详解

一段新的启程&#xff0c; 披荆斩棘而前&#xff0c; 心中的梦想&#xff0c; 照亮每个黑暗的瞬间。 无论风雨多大&#xff0c; 我们都将坚强&#xff0c; 因为希望的火焰&#xff0c; 在胸中永不熄灭。 成功不是终点&#xff0c; 而是每一步的脚印&#xff0c; 用汗水浇灌&…

2024年6月27日,欧盟REACH法规新增第31批1项SVHC高关注物质

ECHA公布第31批1项SVHC&#xff0c;物质已增至241项 2024年6月27日&#xff0c;ECHA公布第31批1项SVHC&#xff0c;总数达241项。新增物质未包括磷酸三苯酯&#xff0c;仍在评议中。REACH法规要求SVHC含量超0.1%需告知下游&#xff0c;出口超1吨须通报ECHA。SCIP通报要求SVHC含…

Java--回顾方法的定义

1.修饰符 public 公共的 修饰String类型 2.返回类型 返回的值得类型 返回值为String&#xff08;字符串&#xff09;类型 3.break continue return的区别 break&#xff0c;结束整个循环 continue&#xff0c;结束本次循环 return&#xff0c;结束整…

AI产品经理需要懂的算法和模型

本篇希望以精准推荐模型为案例通过全面的撰写将AI产品经理需要懂的算法和模型进行了系统的入门讲解。 一个产品经理经常疑惑的概念&#xff1a; 算法和模型的关系&#xff0c;产品经理懂得解决问题时将问题抽象为模型&#xff0c;对模型求解用算法&#xff0c;没有谁大谁小&a…

激光与相机融合标定汇总:提升融合算法的精度与可靠性(附github地址)

前言 随着科技的飞速发展&#xff0c;激光技术与相机技术的融合已成为推动智能化影像发展的重要力量。这种融合不仅提高了成像的精度和效率&#xff0c;还为相关行业带来了革命性的变革。在这篇博客中&#xff0c;我们将深入探讨激光与相机融合标定的原理及其在各个领域的应用…