题目描述
给定 n
个非负整数表示每个宽度为 1
的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
示例 1:
输入:height = [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:
输入:height = [4,2,0,3,2,5] 输出:9
提示:
n == height.length
1 <= n <= 2 * 104
0 <= height[i] <= 105
解法一:以列为中心左右拓展求单位积水
求每一列的水,我们只需要关注当前列,以及左边最高的墙,右边最高的墙就够了。
装水的多少,当然根据木桶效应,我们只需要看左边最高的墙和右边最高的墙中较矮的一个就够了。
所以,根据较矮的那个墙和当前列的墙的高度可以分为三种情况。
- 较矮的墙的高度大于当前列的墙的高度
把正在求的列左边最高的墙和右边最高的墙确定后,然后为了方便理解,我们把无关的墙去掉。
这样就很清楚了,现在想象一下,往两边最高的墙之间注水。正在求的列会有多少水?
很明显,较矮的一边,也就是左边的墙的高度,减去当前列的高度就可以了,也就是 2 - 1 = 1(红色处),可以存一个单位的水。
- 较矮的墙的高度小于或等于当前列的墙的高度
同样的,我们把其他无关的列去掉。
以正在求的列为中心向左右拓展无法满足注水的条件
public int trap(int[] height) {
int sum = 0;
//最两端的列不用考虑,因为一定不会有水。所以下标从 1 到 length - 2
for (int i = 1; i < height.length - 1; i++) {
int max_left = 0;
//找出左边最高
for (int j = i - 1; j >= 0; j--) {
if (height[j] > max_left) {
max_left = height[j];
}
}
int max_right = 0;
//找出右边最高
for (int j = i + 1; j < height.length; j++) {
if (height[j] > max_right) {
max_right = height[j];
}
}
//找出两端较小的
int min = Math.min(max_left, max_right);
//只有较小的一段大于当前列的高度才会有水,其他情况不会有水
if (min > height[i]) {
sum = sum + (min - height[i]);
}
}
return sum;
}
解法二: 动态规划
我们注意到,上述解法一中。对于每一列,我们求它左边最高的墙和右边最高的墙,都是重新遍历一遍所有高度,这里我们可以优化一下。
首先用两个数组,max_left [i] 代表第 i 列左边最高的墙的高度,max_right[i] 代表第 i 列右边最高的墙的高度。
对于 max_left我们其实可以这样求。
max_left [i+1] = Max(max_left [i],height[i])。它前边的墙的左边的最高高度和它前边的墙的高度选一个较大的,就是当前列左边最高的墙了。
对于 max_right我们可以这样求。
max_right[i-1] = Max(max_right[i],height[i]) 。它后边的墙的右边的最高高度和它后边的墙的高度选一个较大的,就是当前列右边最高的墙了。
这样,我们再利用解法一的算法,就不用在 for 循环里每次重新遍历一次求 max_left 和 max_right 了。
public int trap(int[] height) {
int sum = 0;
int[] max_left = new int[height.length];
int[] max_right = new int[height.length];
for (int i = 0; i < height.length - 1; i++) {
max_left[i+1] = Math.max(max_left[i], height[i]);
}
for (int i = height.length - 1; i > 0; i--) {
max_right[i-1] = Math.max(max_right[i], height[i]);
}
for (int i = 0; i < height.length - 1; i++) {
int min = Math.min(max_left[i], max_right[i]);
if (min > height[i]) {
sum = sum + (min - height[i]);
}
}
return sum;
}
解法二: 单调栈
说到栈,我们肯定会想到括号匹配了。我们仔细观察蓝色的部分,可以和括号匹配类比下。每次匹配出一对括号(找到对应的一堵墙),就计算这两堵墙中的水。
我们用栈保存每堵墙。
当遍历墙的高度的时候,如果当前高度小于栈顶的墙高度,说明这里会有积水,我们将墙的高度的下标入栈。
如果当前高度大于栈顶的墙的高度,说明之前的积水到这里停下,我们可以计算下有多少积水了。计算完,就把当前的墙继续入栈,作为新的积水的墙。
总体的原则就是,
- 当前高度小于等于栈顶高度,入栈,指针后移。
- 当前高度大于栈顶高度,出栈,计算出当前墙和栈顶的墙之间水的多少,然后计算当前的高度和新栈的高度的关系,重复第 2 步。直到当前墙的高度不大于栈顶高度或者栈空,然后把当前墙入栈,指针后移。
- 我们看具体的例子。
- 首先将 height [ 0 ] 入栈。然后 current 指向的高度大于栈顶高度,所以把栈顶 height [ 0 ] 出栈,然后栈空了,再把 height [ 1 ] 入栈。current 后移
而对于计算 current 指向墙和新的栈顶之间的水,根据图的关系,我们可以直接把这两个墙当做之前解法三的 max_left 和 max_right,然后之前弹出的栈顶当做每次遍历的 height [ i ]。水量就是 Min ( max _ left ,max _ right ) - height [ i ],只不过这里需要乘上两个墙之间的距离。可以看下代码继续理解下。
public int trap6(int[] height) {
int sum = 0;
Stack<Integer> stack = new Stack<>();
int current = 0;
while (current < height.length) {
//如果栈不空并且当前指向的高度大于栈顶高度就一直循环
while (!stack.empty() && height[current] > height[stack.peek()]) {
int h = height[stack.peek()]; //取出要出栈的元素
stack.pop(); //出栈
if (stack.empty()) { // 栈空就出去
break;
}
int distance = current - stack.peek() - 1; //两堵墙之前的距离。
int min = Math.min(height[stack.peek()], height[current]);
sum = sum + distance * (min - h);
}
stack.push(current); //当前指向的墙入栈
current++; //指针后移
}
return sum;
}
相关题目
LeetCode085最大子矩形(相关话题:单调栈)_击水三千里的博客-CSDN博客
LeetCode239之滑动窗口最大值(相关话题:单调队列)_击水三千里的博客-CSDN博客