需求
当前数仓架构流程图如下图所示,不支持端到端数据血缘,数据异常排查及影响分析比较被动,需要端到端数据血缘及元数据管理。
业务系统:各种制造业业务系统(高速迭代、重构、新建中)
数仓开发平台:数栖平台,支持数仓内各层级的DAG调度血缘图
数仓导出库:PG
BI可视化系统:FineBI,支持内部数据集、图表的血缘
通过调研分析,引入datahub做元数据管理平台,实现效果如下图展示。
方案
实现如下端到端血缘图:
BI报表/仪表盘(dashboard)->BI组件(chart)->BI数据集->数仓导出库(PG)->数仓数据资产(数栖平台)->上游业务系统
工作内容:
- ✅datahub中自定义FineBI、数栖平台的plateform及图表
- ✅解析FineBI数据库,获取FineBI中BI报表/仪表盘(dashboard)->BI组件(chart)->BI数据集的血缘关系,调用Datahub rest emiter接口,datahub中生成血缘。
- ✅获取BI数据集的SQL代码,通过sqllineage解析BI数据集与数仓导出库(PG)的血缘关系,调用Datahub rest emiter接口,datahub中生成血缘。
- ✅获取数栖平台数据库中工作流、Hive任务的关系,获取Hive任务的SQL代码,通过sqllineage解析SQL代码的血缘,调用Datahub rest emiter接口,datahub中生成血缘。
本文介绍:
- ✅datahub中自定义FineBI、数栖平台的plateform及图表
- ✅通过sqllineage解析SQL生成血缘关系
- ✅调用Datahub rest emiter接口,datahub中生成血缘
前置工作
- 安装Datahub
- 安装sqllineage
datahub自定义图标
官方文档:
[cloud@dp-web-uic1 datahub_ingest]$ datahub put platform --name fine_bi --display_name "FineBI" --logo "https://www.finebi.com/images/logo-FineBI.png"
✅ Successfully wrote data platform metadata for urn:li:dataPlatform:fine_bi to DataHub (DataHubRestEmitter: configured to talk to http://localhost:8080)
[cloud@dp-web-uic1 ~]$ datahub put platform --name yuan_xiang --display_name "源象" --logo "https://www.dtwave.com/images/index/product/shuqi.svg"
✅ Successfully wrote data platform metadata for urn:li:dataPlatform:yuan_xiang to DataHub (DataHubRestEmitter: configured to talk to http://localhost:8080)
[cloud@dp-web-uic1 ~]$ datahub put platform --name dolphinscheduler --display_name "海豚调度" --logo "https://dolphinscheduler.apache.org/img/hlogo_white.svg"
✅ Successfully wrote data platform metadata for urn:li:dataPlatform:dolphinscheduler to DataHub (DataHubRestEmitter: configured to talk to http://localhost:8080)
[cloud@dp-web-uic1 datahub_ingest]$ datahub put platform --name statrocks --display_name "StarRocks" --logo "https://docs.starrocks.io/static/b660bcde69091ea56bd94cac0a907018/95f17/starrocks-logo_en-us.png"
✅ Successfully wrote data platform metadata for urn:li:dataPlatform:statrocks to DataHub (DataHubRestEmitter: configured to talk to http://localhost:8080)
sqllineage解析SQL生成血缘关系
- sqllineage解析SQL生成血缘测试
from sqllineage.runner import LineageRunner
def test_create_as():
sql="""
-- mes数据中获取每个批次第一次上线扫码时间
drop table if exists sda${db_para}.tmp_sda_delivety_complete_sr_sum_00;
create table if not exists sda${db_para}.tmp_sda_delivety_complete_sr_sum_00
as
select
min(produce_date) min_produce_DATE,
mo_lot_no,
organization_id
from bda${db_para}.BDA_MES_PRODUCT_SUMMARY
where factory_no ='CY-SR'
and step_name in ('OC上线组装','整机组装1')
group by mo_lot_no,
organization_id
;
-- 订单承诺
drop table if exists sda${db_para}.tmp_sda_delivety_complete_sr_sum_01_1;
create table if not exists sda${db_para}.tmp_sda_delivety_complete_sr_sum_01_1
as
select t1.version_id
, t1.promise_id
, t1.organization_id
, t1.order_id
, t1.order_no
, t1.order_stage
, t1.order_type
, t1.so_type
, t1.order_status
, t1.order_priority
, t1.promise_status
, t1.product_id
, t1.product_no
, t1.product_model
, t1.order_qty
, t1.bu_name
, t1.rcv_client_name
, t1.prepared_client_name
, t1.order_source
, t1.om_user_name
, t1.term_cust
, t1.to_pur_time
, t1.factory_no
, t1.mo_lot_no
, t1.completed_qty
, t1.mo_audit_status
, t1.req_arrival_time
, t1.mtr_ready_time
, t1.plan_promise_time
, t1.promise_date_change_reason
, t1.schedule_start_time
, t1.schedule_end_time
, t1.pps_type
, t1.pps_exception_info
, t1.promise_diff_day
, t1.promise_delivery_cycle
, t1.change_reason
, t1.client_abbr
, t1.item_type_product
, t1.match_forecast
, t1.software_flag
, t1.risk_level
, t1.risk_reason
, t1.ckd_type
, t1.crt_user
, t1.crt_time
, t1.upd_user
, t1.upd_time
, t1.crt_user_name
, t1.upd_user_name
from bda${db_para}.bda_whole_pto_order t1
left join bda${db_para}.bda_promise_history_record t2 on t1.promise_id = t2.promise_id and coalesce(t2.afterchangereason,'') = 'AGAIN_PLAN'
where t1.version_id like '%最新版本%'
and t2.promise_id is null
union all
select t1.version_id
, t1.promise_id
, t1.organization_id
, t1.order_id
, t1.order_no
, t1.order_stage
, t1.order_type
, t1.so_type
, t1.order_status
, t1.order_priority
, t1.promise_status
, t1.product_id
, t1.product_no
, t1.product_model
, t1.order_qty
, t1.bu_name
, t1.rcv_client_name
, t1.prepared_client_name
, t1.order_source
, t1.om_user_name
, t1.term_cust
, t1.to_pur_time
, t1.factory_no
, t1.mo_lot_no
, t1.completed_qty
, t1.mo_audit_status
, t1.req_arrival_time
, t1.mtr_ready_time
, t1.plan_promise_time
, t1.promise_date_change_reason
, t1.schedule_start_time
, t1.schedule_end_time
, t1.pps_type
, t1.pps_exception_info
, t1.promise_diff_day
, t1.promise_delivery_cycle
, t1.change_reason
, t1.client_abbr
, t1.item_type_product
, t1.match_forecast
, t1.software_flag
, t1.risk_level
, t1.risk_reason
, t1.ckd_type
, t1.crt_user
, t1.crt_time
, t1.upd_user
, t1.upd_time
, t1.crt_user_name
, t1.upd_user_name
from (
select t1.version_id
, t1.promise_id
, t1.organization_id
, t1.order_id
, t1.order_no
, t1.order_stage
, t1.order_type
, t1.so_type
, t1.order_status
, t1.order_priority
, t1.promise_status
, t1.product_id
, t1.product_no
, t1.product_model
, t1.order_qty
, t1.bu_name
, t1.rcv_client_name
, t1.prepared_client_name
, t1.order_source
, t1.om_user_name
, t1.term_cust
, t1.to_pur_time
, t1.factory_no
, t1.mo_lot_no
, t1.completed_qty
, t1.mo_audit_status
, t1.req_arrival_time
, t1.mtr_ready_time
, t1.plan_promise_time
, t1.promise_date_change_reason
, t1.schedule_start_time
, t1.schedule_end_time
, t1.pps_type
, t1.pps_exception_info
, t1.promise_diff_day
, t1.promise_delivery_cycle
, t1.change_reason
, t1.client_abbr
, t1.item_type_product
, t1.match_forecast
, t1.software_flag
, t1.risk_level
, t1.risk_reason
, t1.ckd_type
, t1.crt_user
, t1.crt_time
, t1.upd_user
, t1.upd_time
, t1.crt_user_name
, t1.upd_user_name
, row_number() over (partition by t1.promise_id order by t1.version_id desc) rn
from bda${db_para}.bda_whole_pto_order t1
where version_id not like '%最新版本%'
and not exists (select 1 from bda${db_para}.bda_whole_pto_order t2 where version_id like '%最新版本%' and t1.promise_id = t2.promise_id )
) t1
left join bda${db_para}.bda_promise_history_record t2 on t1.promise_id = t2.promise_id and coalesce(t2.afterchangereason,'') = 'AGAIN_PLAN'
where t2.promise_id is null
and t1.rn = 1
;
-- CRM订单与工单关联
drop table if exists sda${db_para}.tmp_sda_delivety_complete_sr_sum_01;
create table if not exists sda${db_para}.tmp_sda_delivety_complete_sr_sum_01
as
select bu.dept_name bu_name
,t2.organization_id -- 20220701 wyr
-- ,'514' Organization_Id
,t1.item_code item_code
,cus.cus_name -- 收货客户
,t1.so_header_id
,t1.so_line_id so_line_id
,t1.so_code so_header_code
,t1.line_no so_line_code
,t2.wip_entity_name -- 工单号
,t2.lot_number -- 批次
,t2.Project_Name
,t1.om_user_name Om_User_Name -- 销管
,t1.sale_name sales_user -- 销售
,case when bsse.is_source_forecast = '1' and mio.planning_make_buy_code = '制造'
and mig.min_class like '%PC模块%' then date_add(t1.pur_start_time, 20)
when bsse.is_source_forecast = '1' and mio.planning_make_buy_code = '制造'
and mig.min_class not like '%PC模块%' then date_add(t1.pur_start_time, 35)
when bsse.is_source_forecast = '0' and mio.planning_make_buy_code = '制造'
and mig.min_class like'%PC模块%' then date_add(t1.pur_start_time, 25)
when bsse.is_source_forecast = '0' and mio.planning_make_buy_code = '制造'
and mig.min_class not like '%PC模块%' then date_add(t1.pur_start_time, 45)
when bsse.is_source_forecast is null and mio.planning_make_buy_code = '制造'
and mig.min_class like '%PC模块%' then date_add(t1.pur_start_time, 20)
when bsse.is_source_forecast is null and mio.planning_make_buy_code = '制造'
and mig.min_class not like '%PC模块%' then date_add(t1.pur_start_time, 30)
else t1.pur_start_time
end stat_date -- 统计日期 提交下采购日期 + 对应日期
,substr(t1.expected_delivery_date, 1, 10) delivety_time -- 计划发运日期
,substr(t1.crt_time, 1, 10) crm_create_time -- 销售订单创建时间
,substr(t1.pur_start_time, 1, 10) purchase_date -- 提交下采购时间
,substr(t1.produce_start_time, 1, 10) produce_date -- 下生产时间
,substr(t2.Xwh_Creation_Date, 1, 10) wip_create_date -- 委外工单创建日期
,substr(t2.Scheduled_Start_Date, 1, 10) Scheduled_Start_Date -- 工单齐套日期
,substr(t2.Mc_Creation_Date, 1, 10) Mc_Creation_Date -- 生管确认时间
,substr(t2.first_trx_date, 1, 10) first_finish_date -- 首次完工入库日期
,substr(t2.last_trx_date, 1, 10) last_finish_date -- 完全完工入库日期
,t1.so_type_name order_type -- 订单类型
,t2.wip_job_status -- 工单状态
,t2.Job_Type -- 工单类型
,t2.Class_Code -- 工单分类
,t2.Quantity_Completed -- 工单已完工数量
,t1.qty -- 订单数量
,case when t6.order_no is not null then t6.match_forecast else bsse.is_source_forecast end as is_source_forecast -- 订单有无预测
,mio.planning_make_buy_code -- 整机加工模式 制造/采购
,case when mig.min_class like '%PC模块%' then 'PC模块' else '其他' end prod_type
,datediff(t2.last_trx_date, t1.pur_start_time) supply_cycle -- 供应链周期 (取多个工单中最早的完工入库时间,计算供应链周期)
,case when t1.so_type_name <> '备品订单' and t2.first_trx_date is not null then 'Y' else 'N' end supply_cycle_flag -- 供应链周期标识
,case when t1.so_type_name = '客户订单' and t2.Job_Type = '标准'
and (
(bsse.is_source_forecast = '1' and mio.planning_make_buy_code = '制造'
and mig.min_class like '%PC模块%' and datediff(t2.first_trx_date, t1.pur_start_time) <= 20)
or
(bsse.is_source_forecast = '1' and mio.planning_make_buy_code = '制造'
and mig.min_class not like '%PC模块%' and datediff(t2.first_trx_date, t1.pur_start_time) <= 35)
or
(bsse.is_source_forecast = '0' and mio.planning_make_buy_code = '制造'
and mig.min_class like '%PC模块%' and datediff(t2.first_trx_date, t1.pur_start_time) <= 25)
or
(bsse.is_source_forecast = '0' and mio.planning_make_buy_code = '制造'
and mig.min_class not like '%PC模块%' and datediff(t2.first_trx_date, t1.pur_start_time) <= 45)
or
(bsse.is_source_forecast is null and mio.planning_make_buy_code = '制造'
and mig.min_class like '%PC模块%' and datediff(t2.first_trx_date, t1.pur_start_time) <= 20)
or
(bsse.is_source_forecast is null and mio.planning_make_buy_code = '制造'
and mig.min_class not like '%PC模块%' and datediff(t2.first_trx_date, t1.pur_start_time) <= 35)
) and t2.first_trx_date is not null then 'Y'
else 'N' end delivety_complete_flag -- 交付达成标识
,case when t1.so_type_name in ('客户订单','销售订单') and t2.Job_Type = '标准' then 'Y' else 'N' end is_delivety_complete_flag -- 交付达成标识
,t1.expected_delivery_date overseas_stat_date -- 海外订单交付达成归集时间
,case when t1.so_type_name in ('客户订单','销售订单') -- and bsse.is_source_forecast is not null
and datediff(t2.last_trx_date, t1.expected_delivery_date) <= 0 and t2.last_trx_date is not null then 'Y'
else 'N' end overseas_is_delivety_complete_flag -- 海外订单交付达成标识
,case when t1.so_type_name in ('客户订单','销售订单') -- and bsse.is_source_forecast is not null
and (datediff('${bizDate}', t1.expected_delivery_date) >= 0
or (datediff('${bizDate}', t1.expected_delivery_date) < 0 and datediff(t2.last_trx_date, t1.expected_delivery_date) <= 0)
) then 'Y'
else 'N' end overseas_delivety_complete_flag -- 海外订单交付达成数据范围
,row_number() over(partition by t2.Lot_Number order by t1.pur_start_time) rn
,t2.Start_Quantity wip_qty
,t2.fisrt_picking_date -- 首次领料时间
,t3.first_ship_date
,t3.last_ship_date
,-1*trx33.shipped_qty shipped_qty -- 已出货数量
,t2.Quantity_Completed + trx33.shipped_qty as difference_qty -- 差异
,dmpm.screen_size -- 尺寸
,t2.Created_By as pm_user -- 生管负责人
,substr(t3.min_scheduled_date, 1, 10) as min_scheduled_date -- 实际齐套日期
,substr(t5.min_produce_DATE, 1, 10) min_produce_date
,t1.bt_name -- add by tjl 2022.07.21
,bsse.so_line_group_id --
,substr(t3.online_date, 1, 10) as online_date
,datediff(substr(t1.expected_delivery_date, 1, 10),substr(t1.pur_start_time, 1, 10)) as cus_expect_cycle -- 客户期望周期
,case when t6.order_no is not null and t6.plan_promise_time is not null then datediff(substr(t6.plan_promise_time,1,10),substr(t1.pur_start_time, 1, 10)) -- 如有承诺日期 预计供应链=承诺日期-下采购日期
when t6.order_no is not null and t6.plan_promise_time is null and t2.wip_entity_name is null then datediff(date_add(substr(t6.mtr_ready_time, 1, 10),6),substr(t1.pur_start_time, 1, 10)) -- 无承诺日期 未开工单,= 齐套日期+6
when t2.wip_entity_name is not null and t3.online_date is not null then datediff(date_add(substr(t3.online_date, 1, 10),4),substr(t1.pur_start_time, 1, 10)) -- 已开工单,已有上线日期,=上线日期+4
when t2.wip_entity_name is not null and t3.online_date is null then datediff(date_add(substr(t2.Scheduled_Start_Date, 1, 10),6),substr(t1.pur_start_time, 1, 10)) -- 已开工单,暂无上线日期,=齐套日期+6
end as estimate_supply_cycle -- 预计供应链周期
,t8.cus_level
-- from bda${db_para}.bda_oms_so_lines t1
FROM bda${db_para}.bda_sd_so t1
left join bda${db_para}.bda_sd_so_ext bsse
on t1.so_line_id = bsse.so_line_id
and bsse.part_dt IN ('crm_so', 'oms_so')
join bda${db_para}.bda_job_inv_trx_zj_dtl t2
on bsse.so_line_group_id = t2.source_line_id
-- and t1.so_header_id = t2.source_header_id
left join dim${db_para}.dim_hcm_orgunit bu
on t1.bill_bu_id = bu.dept_oid
left join bda${db_para}.comm_market_cus cus
on t1.rec_cus_code = cus.id
-- join (select item_value, fullname
-- from o_crm${db_para}.comm_dictionary_detail
-- where parentcode = '$CRM_DELIVERY_SO_TYPE') cdd
-- on cdd.item_value = t1.so_type
left join dim${db_para}.md_item_group mig
on t2.item_code = mig.item_code
left join dim${db_para}.md_item_org mio
on t1.item_code = mio.item_code
and mio.Organization_Id = '514'
left join dim${db_para}.dim_md_prod_model dmpm
on mig.product_model = dmpm.prod_model
left join bda${db_para}.bda_job_dtl t3
on t2.wip_entity_name = t3.wip_entity_name
left join o_md${db_para}.md_prod_model t4
on mig.product_model = t4.product_model
left join (select sum(trx_so.trx_qty) shipped_qty
,trx_so.bch_nbr
from bda${db_para}.bda_inv_item_trx_bach_dtl trx_so
where trx_so.trx_type_id = 33
group by trx_so.bch_nbr) trx33
on trx33.bch_nbr = t2.lot_number
left join sda${db_para}.tmp_sda_delivety_complete_sr_sum_00 t5 on t5.mo_lot_no = t2.lot_number
left join sda${db_para}.tmp_sda_delivety_complete_sr_sum_01_1 t6
on t1.line_code = t6.order_no
left join bda${db_para}.bda_wip_mo_header t7 on t3.wip_entity_name = t7.ebs_mo_code
left join (select t.cus_code
, t2.hcm_dept_oid as dept_oid
, max(t.cus_level) as cus_level_id
, max(t1.fullname) as cus_level
, t2.hcm_dept_name as dept_name
from o_crm${db_para}.cus_bu_ext_info t
left join o_crm${db_para}.comm_dictionary_detail t1
on t.cus_level = t1.item_value
and t1.parentcode = '$CRM_CUS_LEVEL'
inner join dim${db_para}.dim_hcm_crm_org_map t2
on t.bu_code = t2.dept_code
where t2.dept_name not like '%失效%'
and t.is_deleted = '0'
and t2.hcm_dept_oid is not null
group by t.cus_code,t2.hcm_dept_oid,t2.hcm_dept_name) t8
on t1.rec_cus_code = t8.cus_code
and bu.dept_oid = t8.dept_oid
where t1.pur_start_time is not null
and t1.is_onhand_out in ('0','否')
and t4.finished_or_semi_finished_prod = '成品'
AND t1.part_dt IN ('crm_so', 'oms_so')
and t3.wip_job_status<>'已取消' and (t3.wip_job_status<>'已关闭' or t3.quantity_completed >0)
and coalesce(t7.source_demand_max,'')<>'相关需求'
;
insert overwrite table sda${db_para}.sda_delivety_complete_sr_sum
select t.bu_name
,t.Organization_Id
,t.item_code
,t.cus_name -- 收货客户
,t.so_header_code
,t.so_line_code
,t.wip_entity_name
,t.lot_number
,t.Project_Name
,t.Om_User_Name -- 销管
,t.sales_user -- 销售
,t.delivety_time -- 计划发运日期
,t.crm_create_time -- 销售订单创建时间
,t.purchase_date -- 提交下采购时间
,t.produce_date -- 下生产时间
,t.stat_date -- 统计日期 提交下采购日期 + 对应日期
,t.wip_create_date -- 委外工单创建日期
,t.Scheduled_Start_Date -- 工单齐套日期
,t.Mc_Creation_Date -- 生管确认时间
,t.first_finish_date -- 首次完工入库日期
,t.last_finish_date -- 完全完工入库日期
,t.order_type -- 订单类型
,t.job_type
,t.supply_cycle -- 供应链周期
,t.supply_cycle_flag -- 供应链周期标识
,t.delivety_complete_flag -- 交付达成标识
,t.is_delivety_complete_flag
,t.overseas_stat_date
,t.overseas_is_delivety_complete_flag
,t.overseas_delivety_complete_flag
,t.is_source_forecast is_source_forecast
,t.wip_qty
,t.fisrt_picking_date
,t.first_ship_date
,t.last_ship_date
,'MTO' order_mode
,current_timestamp()
,'${bizDate}'
,t.shipped_qty -- 已出货数量
,t.difference_qty -- 差异
,t.screen_size -- 尺寸
,t.pm_user -- 生管负责人
,t.min_scheduled_date
,t.min_produce_date
,t.bt_name -- add by tjl 2022.07.21
,t.so_line_group_id
,t.Class_Code -- add by wyr 2022.09.23
,t.cus_level as cus_level -- tjl 2022.11.02
,t.cus_expect_cycle as cus_expect_cycle -- 客户期望周期 -- add by tjl 2022.11.02
,t.estimate_supply_cycle as estimate_supply_cycle -- 预计供应链周期 -- add by tjl 2022.11.02
from sda${db_para}.tmp_sda_delivety_complete_sr_sum_01 t
where t.rn = 1
;
"""
result = LineageRunner(sql.replace("${db_para}",''))
print(result.source_tables)
print(result.target_tables)
if __name__ == "__main__":
test_create_as()
调用Datahub rest emiter接口,datahub中生成血缘
#!/usr/bin/python3
# coding=utf8
# -----------------------------------------------------------------------------------
# 日 期:2022.08.30
# 作 者:zds
# 用 途: 数仓Hive血缘
# 1. 通过Trino查询数据库,获取数栖平台调度DAG血缘关系
# 2. 注意:直接操作数据库修改权限,BI有大概几分钟的缓存时间,需要等待数据更新。
# 3. 注意:fine_pack_filter中create_type=3,是用户角色。使用的rowid = fine_user中的id,在最终用户权限上配置的。
# . 4. "且" = 34;"或"=35
# 5. 依赖数仓中manual开头的表,这些表通过爬虫采集,数据延迟一天
# -----------------------------------------------------------------------------------
import json
import time
import datetime
import base64
import re
import pandas as pd
from simple_ddl_parser import DDLParser
from sqlalchemy import create_engine
from sqllineage.runner import LineageRunner
import datahub.emitter.mce_builder as builder
from datahub.emitter.rest_emitter import DatahubRestEmitter
class DWHiveLineage:
def __init__(self):
self.shuxi_db = create_engine("mysql+pymysql://xxxx@p-dbsec-mysql.gz.cvte.cn:10006/uic")
def get_task_sql(self):
# tasktype_id in (4,8,11,12,16) 全部有源码的任务
sql = """
select cata_id,flow_id,task_id,task_name,task_type_name,source, parameter from (
select rtc.task_id ,rtc.source,rtc.parameter,bt.task_name,bt.tasktype_id,btt.task_type_name,bc.cata_id,bc.flow_id
from dipper.rel_task_config rtc
left join (
select task_name,tasktype_id,task_id,flow_id from dipper.bas_task where tasktype_id in (12,16) and tasktype_id is not null
and ws_id = 11 and invalid = 0
)bt on rtc.task_id = bt.task_id
left join dipper.bas_tasktype btt on btt.tasktype_id = bt.tasktype_id
left join (select * from dipper.bas_cata where invalid = 0 and ws_id = 11) bc on bc.flow_id = bt.flow_id
)t where t.source is not null and t.task_name is not null
order by flow_id
"""
df = pd.read_sql(sql=sql, con=self.shuxi_db)
return df
def list_lineages(self):
df = self.get_task_sql()
dataset_lineages = {}
idx = 0
for row in df.to_dict(orient="records"):
try:
sql = base64.b64decode(row['source']).decode('utf-8')
print("============" + row['task_name'] + "========")
result = LineageRunner(sql.replace("${db_para}", ''))
# 一个文件中有多个SQL语句,需要拆分处理
if len(result.target_tables) > 2:
print("目标表有多个,需要拆分SQL再计算血缘:【{}】".format(result.target_tables))
else:
dataset_lineages[str(result.target_tables[0])] = [str(t) for t in self.source_tables]
idx += 1
except Exception as e:
print("解析任务【{}】SQL失败。".format(row['task_name']))
print(e)
break
if idx > 10:
break
return dataset_lineages
def generate_lineages(self):
result_tables = self.list_lineages()
for target_table in result_tables.keys():
input_tables_urn = []
for source_table in result_tables[target_table]:
input_tables_urn.append(builder.make_dataset_urn("hive", source_table))
# Construct a lineage object.
lineage_mce = builder.make_lineage_mce(
input_tables_urn,
builder.make_dataset_urn("hive", target_table),
)
# Create an emitter to the GMS REST API.
emitter = DatahubRestEmitter("http://xx.xx.xx.xx:8080")
# Emit metadata!
emitter.emit_mce(lineage_mce)
try:
emitter.emit_mce(lineage_mce)
print("添加数仓表 【{}】血缘成功".format(target_table))
except Exception as e:
print("添加数仓表 【{}】血缘失败".format(target_table))
print(e)
break
if __name__ == "__main__":
dw = DWHiveLineage()
dw.generate_lineages()
效果图
有疑问,欢迎留言讨论