题目描述
给定一个长度为 n
的整数数组 height
。有 n
条垂线,第 i
条线的两个端点是 (i, 0)
和 (i, height[i])
。
找出其中的两条线,使得它们与 x
轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7] 输出:49 解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1] 输出:1
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
解题思路
设两指针 i , j ,指向的水槽板高度分别为 h[i], h[j],此状态下水槽面积为 S(i,j) 。由于可容纳水的高度由两板中的 短板 决定,因此可得如下 面积公式 :
S(i,j)=min(h[i],h[j])×(j−i)
在每个状态下,无论长板或短板向中间收窄一格,都会导致水槽 底边宽度 −1变短:
若向内 移动短板指针i,水槽的短板 min(h[i],h[j]) 可能变大,因此下个水槽的面积可能增大 。
若向内 移动长板指针j,水槽的短板 min(h[i],h[j])不变或变小,因此下个水槽的面积 一定变小 。
因此,初始化双指针分列水槽左右两端,循环每轮将短板向内移动一格,并更新面积最大值,直到两指针相遇时跳出;即可获得最大面积。
算法流程
- 初始化: 双指针 i , j 分列水槽左右两端;
- 循环收窄: 直至双指针相遇时跳出;更新面积最大值 res ;选定两板高度中的短板,向中间收窄一格;
- 返回值: 返回面积最大值 res 即可;
代码实现
class Solution {
public int maxArea(int[] height) {
int i = 0, j = height.length - 1, res = 0;
while(i < j) {
res = height[i] < height[j] ?
Math.max(res, (j - i) * height[i++]):
Math.max(res, (j - i) * height[j--]);
}
return res;
}
}