大型语言模型在AMD GPU上的推理优化

news2025/1/4 20:12:17

Large language model inference optimizations on AMD GPUs — ROCm Blogs

大型语言模型(LLMs)已经改变了自然语言处理和理解,促进了在多个领域中的众多人工智能应用。LLMs在包括AI助手、聊天机器人、编程、游戏、学习、搜索和推荐系统在内的多个领域具有各种有前景的用例。这些应用利用LLMs的能力提供个性化和互动的体验,增强了用户的参与度。

LLMs使用变换器架构来解决梯度消失和爆炸的问题。该架构允许轻松并行化自我关注,使其能够有效地利用多个GPU。其他架构,如递归神经网络(RNN)及其变体(例如LSTM和GRU),在处理长单词序列时存在困难。

尽管具有令人印象深刻的能力,但像GPT和Llama这样的LLMs在用于商业应用之前需要积极的优化,由于它们的大参数规模和自回归顺序处理行为。已经做了许多努力,通过使用GPU的计算容量(TFLOPs)和内存带宽(GB/s)来提高LLMs的吞吐量、延迟和内存占用。

我们将通过比较AMD的MI250和MI210 GPU上的Llama-2-7B和Llama-2-70B模型的性能指标来讨论这些优化技术。

模型特点:Llama2-7b和Llama2-70b

Llama2-7b和70b模型能够处理32,000个词汇。这些模型可以处理最大长度为4,096个令牌序列。Llama2通过采用以下新特征优化了其训练和推理性能:
• *Sigmoid线性单元(SiLU)激活*:替换了常用的线性整流单元(ReLU),以减少消失的梯度问题,实现更平滑的激活。
• *旋转位置嵌入*:减少了经典绝对位置嵌入层的计算成本,同时保持了令牌序列的位置信息。
• *预归一化*:LlamaRMSNorm模块归一化了*输入*而不是*输出*,这减少了梯度消失和爆炸问题。

在Llama-2-7b模型中,自我关注模块中有32个注意力头;每个头有128维。多层感知器(MLP)模块的中间大小有11,008,它由三层组成:`gate_proj`、`up_proj`和`down_proj`。

基于它们的行为,大型语言模型(LLMs)被归类为以下几种:
• *遮蔽语言模型(MLM)*:在提供的上下文词汇之间预测一个新的遮蔽词。BERT就是MLM的一个例子。
• *因果语言模型(CLM)*:在提供的上下文词汇之后预测下一个词。一个众所周知的CLM例子是GPT文本生成。CLM也被称为自回归的标记生成模型,因为其按顺序处理行为。
在这篇博客中,我们更专注于讨论Llama2 CLM。

在CLM(因果语言模型)中,生成令牌分为以下两个阶段:
• *首个令牌生成时间(TTFT)*:生成第一个令牌所需要的时间。填充前延迟被定义为跨请求的平均TTFT。在下面的图中,TTFT是从输入提示“The largest continent”生成“in”所需要的时间。
• *每个输出令牌的时间(TPOT)*:以自回归方式生成每个输出令牌所花费的时间。输出解码延迟被定义为跨请求的平均TPOT,通常使用输出解码阶段所需的时间来估算。在下图中,TPOT是“the”的解码延迟。
TTFT和TPOT被用来计算CLM中的延迟:
延迟 = TTFT + TPOT * (max_new_tokens - 1) 

在*预填充*阶段之后的输入维度,在词嵌入之后,与*批次大小*输入序列长度*成比例。预填充阶段的令牌是同时被处理的。然而,*输出解码*阶段的输入,在词嵌入之后,与*批次大小*成比例;这一阶段的令牌是顺序处理的。这就是为什么当批次大小为1时输出解码操作由高且窄的GEMM(或者是GEMV)组成的原因。

为了简单起见,我们采用了贪婪解码方式来生成令牌,它已知是从输出对数中解码令牌时开销最小的。在实际的聊天机器人场景中,允许生成丰富和出人意料的输出令牌时,最好考虑基于采样的解码以及更高的束宽度。但是,在贪婪解码方案中,自回归的CLM从模型输出对数生成排名第一的令牌。

设备特性:MI210

AMD的Instinct™ MI210在FP16数据类型下的最大计算能力为181 TFLOPs。要完全利用矩阵核心的性能,GEMM的矩阵尺寸应足够大。具有大批次的LLM预填充解码阶段使用大输入矩阵,并且能从矩阵核心的高性能中获益。使用MI210,在提示序列长度和批次大小都很大的预填充阶段,GEMM操作是计算受限的。

MI210能够提供最大的双倍数据速率(DDR)内存带宽,达到1.6 TB/s。输出解码顺序处理令牌。这种自回归解码只有序列长度的一个维度(这使得高且窄的GEMT或GEMV)其中操作是内存受限的。由于LLM输出令牌生成的这种顺序性质,输出解码从DDR带宽中受益。

MI250由MI210的两个图形计算模块(GCD)组成。因此,MI250具有MI210两倍的计算能力、内存大小和内存带宽。LLM可以在MI250的两个硅片上用张量并行(TP)、流水线并行(PP)或数据并行(DP)的模型并行方式进行赋值。这种数据并行可以使LLM的吞吐量翻倍,同时存在两倍模型参数复制的开销。由于缺少开销,张量并行广泛被使用,因其有能力将更大的LLM适配到具有一些集合操作同步开销的高容量MI250 DDR上。

在前面的图表中,请注意,单个MI250 GCD的瓶颈线与MI210的相似。

软件设置

在主机上安装ROCm

要在主机上安装ROCm 6.0,请参阅[安装指南](ROCm installation options — ROCm installation (Linux))。

设置docker

要设置官方的[PyTorch ROCm Docker容器](https://hub.docker.com/r/rocm/pytorch/tags),请使用以下命令:

docker run -it --network=host --device=/dev/kfd --device=/dev/dri --group-add=video --ipc=host --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --shm-size 8G --name llm_optimization rocm/pytorch:rocm6.0_ubuntu22.04_py3.9_pytorch_2.0.1

配置库和工具集

运行以下命令来安装PyTorch 2.3夜间版本:

pip3 uninstall torch torchvision torchaudio pytorch-triton-rocm -y
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.0

有关库的设置,请参考Hugging Face的transformers。

有关工具集的设置,请参考[文本生成推理 (TGI)]。

在MI210上Llama-2-7b的优化比较

• Prefill 延迟

• 输出解码延迟

默认机器学习框架

PyTorch 2支持两种运行模式:急切模式和编译模式。急切模式是PyTorch的默认模式,在这种模式下,模型的运算符会在运行时遇到时顺序执行。编译模式在LLM推理优化技术中有所涵盖。

为了运行LLM解码器模型(例如,Llama-2),Hugging Face提供了transformers库在PyTorch之上运行模型。

transformers库在其[APIs]中使用多种令牌生成选项作为参数。在这篇博客中,为了公平地比较每种优化的性能,采用了这些选项:
• *预填充*:使用2048序列长度的提示符,随着批量大小的增加,预填充延迟会增加,因为预填充期间的大型GEMM计算是计算受限的。
• *输出解码*:当批量大小增加时,输出解码延迟并不会大幅增加,因为这个阶段的GEMM的算术强度仍然受到内存带宽的限制。

LLM推理优化技术

在这里,我们讨论各种LLM推理优化技术。

PyTorch编译模式

在[PyTorch编译模式]中,模型被合成为图形,然后降级为主要运算符。这些运算符使用TorchInductor进行编译,它使用OpenAI的Triton作为GPU加速的基础模块。PyTorch编译模式的一个优点是其GPU内核是用Python编写的,这使得修改和扩展它们变得更容易。由于模型运算在运行前就已融合,PyTorch编译模式通常会提供更高的性能,这使得部署高性能内核变得容易。

为了在PyTorch编译模式下运行LLM解码器模型(例如,Llama2),必须显式地将模型的特定层次指定为编译目标。PyTorch编译模式要求在LLM解码器模型的输入批量大小和序列长度在运行时可能改变的情况下重新编译。为了支持动态输入形状的重新编译,请设置参数`dynamic=True`。

for i in range(model.config.num_hidden_layers):
    model.model.decoder.layers[i].self_attn = torch.compile(model.model.decoder.layers[i].self_attn, backend="inductor", mode="default", dynamic=True)

• *预填充*:预填充延迟显著降低。但是,对于LLM解码器模型,它仍然会因为各种批量大小和输入序列长度而遭受巨大的初始重新编译开销。预填充延迟是在初始重新编译(预热)之后测量的。
• *输出解码*:输出解码延迟略有改善,因为模型部分编译了。然而,由于部分密钥/值缓存的动态形状,图形回落到了急切模式。有一种努力来解决这个问题(被称为[静态密钥/值缓存](Accelerating Generative AI with PyTorch II: GPT, Fast | PyTorch))。静态密钥/值缓存与`torch.compile`一起使用时,可以显著提高输出解码性能,但我们的博客并未涵盖此内容。

Flash Attention v2

Flash Attention(flash_attention)算法旨在解决在transformer的多头注意力(MHA)模块中,查询、密钥和值组件所需的大量内存移动问题。通过将部分查询平铺并存储在更快的缓存内存中,而不是在MHA计算期间不断从较慢的外部DDR内存中读取,这一目标得以实现。`flash_attention v2`](https://arxiv.org/abs/2307.08691)可以在长输入序列长度上最大化并行性,与原生的MHA相比,可以显著提升性能。

您可以无缝地使用最新的Hugging Face transform库中的*flash_attention v2模块*来自ROCm。

from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="flash_attention_2")

• *预填充*:Flash Attention模块显著降低了大批量大小和长序列长度的预填充处理延迟,因为MHA矩阵的维度与这些成比例。这导致了flash attentions的更大收益。
• 输出解码:flash_attention在输出解码阶段效果不明显,因为序列长度仅为1。

内存高效多头注意力

内存高效的多头注意力(Xformers)是Meta提供的一系列可定制模块,用于优化变换器模型。Xformers的主要特点是内存高效的多头注意力(MHA)模块,它可以在多头注意力处理过程中显著减少内存流量。这个模块采用与`flash_attention`相似的算法来减少DDR读写带宽。
你可以无缝地将Xformers的内存高效MHA模块适用于ROCM集成到Hugging Face的变换器库中。
- *预填充*:与`flash_attention v2`出于相同的原因,内存高效的MHA在处理大批量尺寸和长序列长度时也显著减少了预填充处理延迟。
- *输出解码*:Xformers在输出解码阶段效果不明显,因为序列长度仅为1。

分页注意力(vLLM)

分页注意力(paged_attention)是vLLM推理系统的一种算法,可以有效减少内存消耗,并在输出解码阶段将延迟降低两到四倍。分页注意力通过使用虚拟内存和分页来管理输出解码阶段的键值缓存(K-V缓存),减少内存碎片。传统的K-V缓存会为输出的最大令牌长度(根据模型的不同为2,048或4,096)预分配内存,如果实际解码长度更短,就可能导致内存碎片。这种基于分页的虚拟内存可以在波束搜索大和多个请求并行运行时节省K-V缓存内存。
vLLM的paged_attention模块适用于ROCM目前是可用的。
- *预填充*:分页注意力在预填充阶段效果不明显,因为这个阶段不使用K-V缓存。
- *输出解码*:分页注意力可以显著降低解码延迟。

PyTorch TunableOp

PyTorch TunableOp允许你使用高性能的rocblas和hipblaslt库进行GEMM。它会对LLM进行性能分析,并准备每个MHA和MLP模块的最佳性能GEMM内核。在运行时,会启动最佳性能GEMM内核,而不是PyTorch内建的GEMM内核。
PyTorch TunableOp目前已经可用。
- *预填充*:结合`flash_attention v2`,PyTorch TunableOp在不同批量大小下显示出显著的性能提升。
- *输出解码*:结合分页注意力,PyTorch TunableOp也显著降低了高瘦GEMM(或GEMV)的延迟。因此,输出解码性能最大限度地受益于rocBLAS和hipBLASLt GEMMs。

多GPU LLM推理优化

预填充延迟

• 输出解码延迟

Hugging Face 文本生成推理

在进行多GPU推理和训练的扩展时,需要使用模型并行技术,例如张量并行(TP)、流水线并行(PP)或数据并行(DP)。张量并行(TP)因为不会导致流水线泡沫而被广泛使用;数据并行(DP)虽然吞吐量高,但需要将参数的副本复制到GPU的DDR中。

在这篇博客中,我们使用TP技术将模型分布在多个GPU上,并使用Hugging Face的文本生成推理(TGI)来测量多GPU的大型语言模型(LLM)推理性能。Hugging Face的TGI实现包括兼容ROCm的`flash_attention`和`paged_attention`,与PyTorch TunableOp的兼容性,以及对ROCm启用的量化(如GPTQ)的支持,这些特点使得它成为一个好选择。

一台服务器配备了4块MI250显卡,总共拥有8个图形计算核心(GCDs)。每个GCD拥有64 GB的HBM内存。

为了充分利用多个MI250 GPU,您需要考虑GPU GCDs之间的互连带宽,因为GCD间的连接吞吐量是不均匀的。例如,在TP=4的情况下,联合使用GCD#0、1、4、6将提供最佳性能,因为集体操作(如全归约或全集合)在TP中会造成较少的同步开销。

在启用非统一内存访问(NUMA)平衡时,GPU必须等待来自页面错误的内存管理单元(MMU)的预先通知器变更。因此,我们推荐禁用NUMA平衡,以避免定期自动平衡干扰GPU操作。

echo 0 > /proc/sys/kernel/numa_balancing

• 填充阶段(Prefill) 和 输出解码阶段(Output decoding):使用8 GCDs (TP=8)的案例展示了比使用4 GCDs (TP=4)更好的填充和输出解码延迟。延迟增强并没有翻倍,因为同步每一层的多头自注意力(MHA)和多层感知机(MLP)的集体操作也是一个巨大的延迟瓶颈。

总结

在这篇博客中,我们介绍了几种软件优化技术,用于在AMD CDNA2 GPUs上部署最先进的大型语言模型(LLMs)。这些包括PyTorch 2编译、Flash Attention v2、`paged_attention`、PyTorch TunableOp以及多GPU推理。这些优化技术已经被AI社区广泛采纳。使用这些优化,根据批量大小和输入序列长度,你可以享受高达三倍的即开即用加速。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1849974.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

8个腾讯,18个阿里,104个百度

8个腾讯、18个阿里巴巴、104个百度!英伟达市值已经超越我的前司微软,成为全球第一,(虽然今天又被微软超越,但势头非常猛)达到了恐怖的3.34万亿美元!这是什么概念?相当于8个腾讯,18个…

ARM阻击高通:AI PC大战与芯片之争

引言 在AI PC领域,高通的X Elite芯片因为其高性能和低功耗,一度被认为是未来的主导者。然而,ARM公司却通过法律手段试图阻止高通的独大,这不仅可能拖慢AI PC的发展进程,还引发了业界的广泛关注。本文将深入探讨ARM和高…

php,python aes加密反解

1. python版本 import base64 from Crypto.Cipher import AES from Crypto.Util.Padding import pad, unpadclass AESUtilCBC:def __init__(self, key, iv):self.key key.encode(utf-8)self.iv iv.encode(utf-8)self.pad_length AES.block_sizedef encrypt(self, data):try…

C语言| 数组倒置II

数组倒置第二种方法:直接在数组内进行倒置 第一个元素和最后一个元素交换, 第二个元素和倒数第二个元素交换 第三个元素和倒数第三个元素交换...... 数组元素个数为偶数,每个元素都能交换一次; 数组元素个数为奇数,最…

IntelliJ IDE 插件开发 | (十)主题插件开发入门

系列文章 本系列文章已收录到专栏,交流群号:689220994,也可点击链接加入。 前言 在前面的章节中,我们介绍的都是功能性插件的开发内容,本文则会介绍一下主题类插件的开发方式。不过本文也只是带大家入个门&#xff…

HTML静态网页成品作业(HTML+CSS+JS)——动漫斗罗大陆介绍网页(3个页面)

🎉不定期分享源码,关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 🏷️本套采用HTMLCSS,使用Javacsript代码实现图片轮播和tab切换,共有3个页面。 …

24.3K star!一个轻量级且高度可配置的现代化命令行文本编辑器

大家好,今天给大家分享的是一个轻量级且高度可配置的现代化命令行文本编辑器。 micro 是一个轻量级且高度可配置的命令行文本编辑器,以其简洁的设计和强大的插件系统著称。该项目强调速度与效率,适合那些追求快速编辑体验并希望保持系统资源占…

ISO14001认证:引领企业迈向绿色未来

在当今全球环境日益恶化的背景下,绿色发展已成为企业和社会共同追求的目标。ISO14001环境管理体系作为由国际标准化组织(ISO)制定的环境管理国际标准,为企业提供了系统和全面的环境管理框架,适用于各种类型和规模的组织…

TurboWarp简单介绍

1.为什么要下载TurboWarp? 2.下载TurboWarp 在线版:TurboWarp - Run Scratch projects faster 离线版下载:TurboWarp Desktop - Better offline editor for Scratch 3 3.使用 界面: 功能: 上方功能条:…

【办公技巧】如何编辑带有限制编辑密码的PDF文件?

PDF文件打开之后发现设置了限制编辑,功能栏中的编辑按钮都是灰色的,导致PDF文件里的内容无法编辑。那么带有限制编辑的PDF文件,如何编辑?今天分享两个方法。 方法一: 我们可以将PDF文件转换成其他格式,有…

御道源码(ruoyi-vue-pro)个人使用小结

御道源码(ruoyi-vue-pro)个人使用小结 一、Git地址 1、平台项目简介及地址 2、开发指南,如图所示,部分功能需要收费,可自行了解 二、项目文件夹结构示例: 三、技术介绍 1.基于 Spring Boot MyBatis P…

【CT】LeetCode手撕—415. 字符串相加

目录 题目1- 思路2- 实现⭐415. 字符串相加——题解思路 3- ACM 实现 题目 原题连接:415. 字符串相加 1- 思路 模式识别:字符串相加 逆向遍历过程模拟 数据结构 ① String res :记录res 、② carry 记录进位值① 定义两个整数遍历 nums1 …

算法篇-二叉树

二叉树的遍历 分为前序、中序和后续的遍历&#xff0c;思想就是利用递归。 前序遍历-中左右 代码&#xff1a; public void travelTree(TreeNode node, List<Integer> resulst) {if (node null){return;}// 中resulst.add(node.val);// 左travelTree(node.left, resul…

Hive笔记-4

240618-Hive笔记-4 4.2 Insert 4.2.1 将查询结果插入表中 1) 语法 INSERT (INTO | OVERWRITE) TABLE tablename [PARTITION (partcol1val1,partcol2val2 ...)] select_stamement; 关键字说明: (1) INTO: 将结果追加到目标表 (2) OVERWRITE: 用结果覆盖原有数据 2) 案例…

如何使用代理ip上网移动转电信

在一些特定的工作场景中&#xff0c;比如跨网办公、数据分析等&#xff0c;我们常常需要将网络IP从一种类型转换到另一种类型。如需将移动网络转电信IP代理。那么&#xff0c;如何使用代理IP上网移动转电信呢&#xff1f;接下来&#xff0c;将为您揭示一个便捷的方法&#xff0…

火车头采集器Typecho采集发布模块插件

火车头采集器发布数据到Typecho系统网站应该怎么操作&#xff1f; 1. 火车头采集器Typecho采集发布插件下载安装&#xff1a; 火车头采集器Typecho采集发布模块插件下载地址-CSDN 2. 在火车头采集器软件导Typecho采集发布模块插件&#xff1b; 3. 填写Typecho系统文章对应的…

【Java】已解决java.lang.FileNotFoundException异常

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决java.lang.FileNotFoundException异常 在Java编程中&#xff0c;java.lang.FileNotFoundException是一个常见的异常&#xff0c;它通常表示程序试图打开一个不存在的文件、文…

ROS机器人虚拟仿真挑战赛持续学习笔记-20240619

cartographer 需要全手工编译……比较麻烦。 如果使用新版ceres-solver&#xff0c;版本2.x&#xff0c;需要修改源码&#xff0c;部分“接口代码”有改动。 稳妥使用ceres-solver-1.13.0&#xff0c;且需要安装abseil-cpp。 验证是否成功&#xff0c;使用roscd或roslaunch…

React+TS前台项目实战(十二)-- 全局常用组件Toast封装,以及rxjs和useReducer的使用

文章目录 前言Toast组件1. 功能分析2. 代码详细注释&#xff08;1&#xff09;建立一个reducer.ts文件&#xff0c;用于管理状态数据&#xff08;2&#xff09;自定义一个清除定时器的hook&#xff08;3&#xff09;使用rxjs封装全局变量管理hook&#xff08;4&#xff09;在to…

Java 图书管理系统功能实现

承接上一篇的 图书管理系统 &#xff0c;点击这里跳转 要实现什么功能 1.查找图书 2.增加图书 3.删除图书 4.展示图书 5.退出系统 6.借阅图书 7.归还图书 1.查找图书 要完成这个功能需要以下步骤 输入书名&#xff0c; 然后在书架里找到这本书打印出来&#xff0c;…