Pyqt QCustomPlot 简介、安装与实用代码示例(二)

news2025/1/12 15:46:29

目录

  • 前言
  • 实用代码示例
    • 彩色图演示
    • 散点像素图演示
    • 实时数据演示
    • 多轴演示
    • 对数轴演示
  • 结语

所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 nixgnauhcuy’s blog!

如需转载,请标明出处!

完整代码我已经上传到 Github 上了,可前往 https://github.com/nixgnauhcuy/QCustomPlot_Pyqt_Study 获取。
完整文章路径:

  • Pyqt QCustomPlot 简介、安装与实用代码示例(一) | nixgnauhcuy
  • Pyqt QCustomPlot 简介、安装与实用代码示例(二) | nixgnauhcuy
  • Pyqt QCustomPlot 简介、安装与实用代码示例(三) | nixgnauhcuy
  • Pyqt QCustomPlot 简介、安装与实用代码示例(四) | nixgnauhcuy

前言

继上文,继续补充官方示例 demo 实现~

实用代码示例

彩色图演示

A 2D color map with color scale. Color scales can be dragged and zoomed just like axes

import sys, math

from PyQt5.QtWidgets import QApplication, QGridLayout, QWidget
from QCustomPlot_PyQt5 import QCustomPlot, QCPAxis, QCPColorScale, QCPColorMap
from QCustomPlot_PyQt5 import QCPColorGradient, QCPMarginGroup, QCP, QCPRange

class MainForm(QWidget):

    def __init__(self) -> None:
        super().__init__()

        self.setWindowTitle("彩色地图演示")
        self.resize(600,400)

        self.customPlot = QCustomPlot(self)
        self.gridLayout = QGridLayout(self).addWidget(self.customPlot)

        # configure axis rect:
        self.customPlot.setInteractions(QCP.Interactions(QCP.iRangeDrag | QCP.iRangeZoom)) # this will also allow rescaling the color scale by dragging/zooming
        self.customPlot.axisRect().setupFullAxesBox(True)
        self.customPlot.xAxis.setLabel("x")
        self.customPlot.yAxis.setLabel("y")

        # set up the QCPColorMap:
        self.colorMap = QCPColorMap(self.customPlot.xAxis, self.customPlot.yAxis)
        nx = 200
        ny = 200
        self.colorMap.data().setSize(nx, ny) # we want the color map to have nx * ny data points
        self.colorMap.data().setRange(QCPRange(-4, 4), QCPRange(-4, 4)) # and span the coordinate range -4..4 in both key (x) and value (y) dimensions
        # now we assign some data, by accessing the QCPColorMapData instance of the color map:
        x, y, z = 0, 0, 0
        for xIndex in range(nx):
            for yIndex in range(ny):
                x, y =self.colorMap.data().cellToCoord(xIndex, yIndex)
                r = 3*math.sqrt(x*x+y*y)+1e-2
                z = 2*x*(math.cos(r+2)/r-math.sin(r+2)/r) # the B field strength of dipole radiation (modulo physical constants)
                self.colorMap.data().setCell(xIndex, yIndex, z)
        # add a color scale:
        self.colorScale = QCPColorScale(self.customPlot)
        self.customPlot.plotLayout().addElement(0, 1, self.colorScale) # add it to the right of the main axis rect
        self.colorScale.setType(QCPAxis.atRight) # scale shall be vertical bar with tick/axis labels right (actually atRight is already the default)
        self.colorMap.setColorScale(self.colorScale) # associate the color map with the color scale
        self.colorScale.axis().setLabel("Magnetic Field Strength")

        # set the color gradient of the color map to one of the presets:
        self.colorMap.setGradient(QCPColorGradient(QCPColorGradient.gpPolar))
        # we could have also created a QCPColorGradient instance and added own colors to
        # the gradient, see the documentation of QCPColorGradient for what's possible.

        self.colorMap.rescaleDataRange() 

        # make sure the axis rect and color scale synchronize their bottom and top margins (so they line up):
        marginGroup = QCPMarginGroup(self.customPlot)
        self.customPlot.axisRect().setMarginGroup(QCP.msBottom|QCP.msTop, marginGroup)
        self.colorScale.setMarginGroup(QCP.msBottom|QCP.msTop, marginGroup)

        # rescale the key (x) and value (y) axes so the whole color map is visible:
        self.customPlot.rescaleAxes()

if __name__ == '__main__':
    app = QApplication(sys.argv)
    mainForm = MainForm()
    mainForm.show()
    sys.exit(app.exec())

在这里插入图片描述

散点像素图演示

Pixmap scatter points and a multi-lined axis label, as well as a plot title at the top

import sys

from PyQt5.QtWidgets import QApplication, QGridLayout, QWidget
from PyQt5.QtGui import QPen, QColor, QFont, QBrush, QPixmap
from PyQt5.QtCore import Qt

from QCustomPlot_PyQt5 import QCustomPlot, QCPTextElement, QCPScatterStyle, QCPGraph

class MainForm(QWidget):

    def __init__(self) -> None:
        super().__init__()

        self.setWindowTitle("散点像素图演示")
        self.resize(600,400)

        self.customPlot = QCustomPlot(self)
        self.gridLayout = QGridLayout(self).addWidget(self.customPlot)

        self.customPlot.axisRect().setBackground(QColor(0, 0, 0))
        self.customPlot.addGraph()
        self.customPlot.graph().setLineStyle(QCPGraph.lsLine)
        pen = QPen(QColor(255, 200, 20, 200))
        pen.setStyle(Qt.DashLine)
        pen.setWidthF(2.5)
        self.customPlot.graph().setPen(pen)
        self.customPlot.graph().setBrush(QBrush(QColor(255,200,20,70)))
        self.customPlot.graph().setScatterStyle(QCPScatterStyle(QPixmap("./tmp.png")))

        # set graph name, will show up in legend next to icon:
        self.customPlot.graph().setName("Data from Photovoltaic\nenergy barometer 2011")
        # set data:
        year = [2005, 2006, 2007, 2008, 2009, 2010, 2011]
        value = [2.17, 3.42, 4.94, 10.38, 15.86, 29.33, 52.1]
        self.customPlot.graph().setData(year, value)

        # set title of plot:
        self.customPlot.plotLayout().insertRow(0)
        self.customPlot.plotLayout().addElement(0, 0, QCPTextElement(self.customPlot, "Regenerative Energies", QFont("sans", 12, QFont.Bold)))
        # axis configurations:
        self.customPlot.xAxis.setLabel("Year")
        self.customPlot.yAxis.setLabel("Installed Gigawatts of\nphotovoltaic in the European Union")
        self.customPlot.xAxis2.setVisible(True)
        self.customPlot.yAxis2.setVisible(True)
        self.customPlot.xAxis2.setTickLabels(False)
        self.customPlot.yAxis2.setTickLabels(False)
        self.customPlot.xAxis2.setTicks(False)
        self.customPlot.yAxis2.setTicks(False)
        self.customPlot.xAxis2.setSubTicks(False)
        self.customPlot.yAxis2.setSubTicks(False)
        self.customPlot.xAxis.setRange(2004.5, 2011.5)
        self.customPlot.yAxis.setRange(0, 52)
        # setup legend:
        self.customPlot.legend.setFont(QFont(self.font().family(), 7))
        self.customPlot.legend.setIconSize(50, 20)
        self.customPlot.legend.setVisible(True)
        self.customPlot.axisRect().insetLayout().setInsetAlignment(0, Qt.AlignLeft | Qt.AlignTop)

if __name__ == '__main__':
    app = QApplication(sys.argv)
    mainForm = MainForm()
    mainForm.show()
    sys.exit(app.exec())

在这里插入图片描述

官方 demo 的背景图我没有,随便用黑色底了,太阳 logo 也没有,随便找了一个,效果一样就行~

实时数据演示

Real time generated data and time bottom axis

import sys, math, random

from PyQt5.QtWidgets import QApplication, QGridLayout, QWidget
from PyQt5.QtGui import QPen, QColor
from PyQt5.QtCore import Qt, QTime, QTimer

from QCustomPlot_PyQt5 import QCustomPlot, QCPAxisTickerTime

class MainForm(QWidget):

    def __init__(self) -> None:
        super().__init__()

        self.setWindowTitle("实时数据演示")
        self.resize(600,400)

        self.lastPointKey = 0

        self.customPlot = QCustomPlot(self)
        self.gridLayout = QGridLayout(self).addWidget(self.customPlot)

        self.customPlot.addGraph()
        self.customPlot.graph(0).setPen(QPen(QColor(40, 110, 255)))
        self.customPlot.addGraph()
        self.customPlot.graph(1).setPen(QPen(QColor(255, 110, 40)))

        timeTicker = QCPAxisTickerTime()
        timeTicker.setTimeFormat("%h:%m:%s")
        self.customPlot.xAxis.setTicker(timeTicker)
        self.customPlot.axisRect().setupFullAxesBox()
        self.customPlot.yAxis.setRange(-1.2, 1.2)

        # make left and bottom axes transfer their ranges to right and top axes:
        self.customPlot.xAxis.rangeChanged.connect(self.customPlot.xAxis2.setRange)
        self.customPlot.yAxis.rangeChanged.connect(self.customPlot.yAxis2.setRange)

        # setup a timer that repeatedly calls MainWindow::realtimeDataSlot:
        self.curTime = QTime.currentTime()
        self.dataTimer = QTimer(self)
        self.dataTimer.timeout.connect(self.realtimeDataSlot)
        self.dataTimer.start(0) # Interval 0 means to refresh as fast as possible

    def realtimeDataSlot(self) -> None:
        # calculate two new data points:
        key = self.curTime.msecsTo(QTime.currentTime())/1000.0
        
        if key-self.lastPointKey > 0.002: # at most add point every 2 ms
            # add data to lines:
            self.customPlot.graph(0).addData(key, math.sin(key)+random.random()*1*math.sin(key/0.3843))
            self.customPlot.graph(1).addData(key, math.cos(key)+random.random()*0.5*math.sin(key/0.4364))
            # rescale value (vertical) axis to fit the current data:
            # self.customPlot.graph(0).rescaleValueAxis()
            # self.customPlot.graph(1).rescaleValueAxis(True)
            self.lastPointKey = key

        # make key axis range scroll with the data (at a constant range size of 8):
        self.customPlot.xAxis.setRange(key, 8, Qt.AlignRight)
        self.customPlot.replot()

if __name__ == '__main__':
    app = QApplication(sys.argv)
    mainForm = MainForm()
    mainForm.show()
    sys.exit(app.exec())

多轴演示

Multiple plot styles with different key/value axes and pi tick labeling at top axis

import sys, math, random

from PyQt5.QtWidgets import QApplication, QGridLayout, QWidget
from PyQt5.QtGui import QPen, QColor, QFont, QBrush
from PyQt5.QtCore import Qt, QLocale
from QCustomPlot_PyQt5 import QCustomPlot, QCPGraph, QCPScatterStyle, QCPTextElement, QCPAxisTickerPi, QCPErrorBars

class MainForm(QWidget):

    def __init__(self) -> None:
        super().__init__()

        self.setWindowTitle("多轴演示")
        self.resize(600,400)

        self.customPlot = QCustomPlot(self)
        self.gridLayout = QGridLayout(self).addWidget(self.customPlot)

        self.customPlot.setLocale(QLocale(QLocale.English, QLocale.UnitedKingdom)) # period as decimal separator and comma as thousand separator
        self.customPlot.legend.setVisible(True)

        legendFont = self.font()  # start out with MainWindow's font..
        legendFont.setPointSize(9) # and make a bit smaller for legend
        self.customPlot.legend.setFont(legendFont)
        self.customPlot.legend.setBrush(QBrush(QColor(255,255,255,230)))
        # by default, the legend is in the inset layout of the main axis rect. So this is how we access it to change legend placement:
        self.customPlot.axisRect().insetLayout().setInsetAlignment(0, Qt.AlignBottom|Qt.AlignRight)

        # setup for graph 0: key axis left, value axis bottom
        # will contain left maxwell-like function
        self.customPlot.addGraph(self.customPlot.yAxis, self.customPlot.xAxis)
        self.customPlot.graph(0).setPen(QPen(QColor(255, 100, 0)))
        self.customPlot.graph(0).setLineStyle(QCPGraph.lsLine)
        self.customPlot.graph(0).setScatterStyle(QCPScatterStyle(QCPScatterStyle.ssDisc, 5))
        self.customPlot.graph(0).setName("Left maxwell function")

        # setup for graph 1: key axis bottom, value axis left (those are the default axes)
        # will contain bottom maxwell-like function with error bars
        self.customPlot.addGraph()
        self.customPlot.graph(1).setPen(QPen(Qt.red))
        self.customPlot.graph(1).setLineStyle(QCPGraph.lsStepCenter)
        self.customPlot.graph(1).setScatterStyle(QCPScatterStyle(QCPScatterStyle.ssCircle, Qt.red, Qt.white, 7))
        self.customPlot.graph(1).setName("Bottom maxwell function")
        errorBars = QCPErrorBars(self.customPlot.xAxis, self.customPlot.yAxis)
        errorBars.removeFromLegend()
        errorBars.setDataPlottable(self.customPlot.graph(1))

        # setup for graph 2: key axis top, value axis right
        # will contain high frequency sine with low frequency beating:
        self.customPlot.addGraph(self.customPlot.xAxis2, self.customPlot.yAxis2)
        self.customPlot.graph(2).setPen(QPen(Qt.blue))
        self.customPlot.graph(2).setName("High frequency sine")

        # setup for graph 3: same axes as graph 2
        # will contain low frequency beating envelope of graph 2
        self.customPlot.addGraph(self.customPlot.xAxis2, self.customPlot.yAxis2)
        blueDotPen = QPen(QColor(30, 40, 255, 150))
        blueDotPen.setStyle(Qt.DotLine)
        blueDotPen.setWidthF(4)
        self.customPlot.graph(3).setPen(blueDotPen)
        self.customPlot.graph(3).setName("Sine envelope")

        # setup for graph 4: key axis right, value axis top
        # will contain parabolically distributed data points with some random perturbance
        self.customPlot.addGraph(self.customPlot.yAxis2, self.customPlot.xAxis2)
        self.customPlot.graph(4).setPen(QPen(QColor(50, 50, 50, 255)))
        self.customPlot.graph(4).setLineStyle(QCPGraph.lsNone)
        self.customPlot.graph(4).setScatterStyle(QCPScatterStyle(QCPScatterStyle.ssCircle, 4))
        self.customPlot.graph(4).setName("Some random data around\na quadratic function")

        # generate data, just playing with numbers, not much to learn here:
        x0 = [3*i/25.0 for i in range(25)]
        y0 = [math.exp(-x*x*0.8)*(x*x+x) for x in x0]
        self.customPlot.graph(0).setData(x0, y0)

        x1 = [3*i/15.0 for i in range(15)]
        y1 = [math.exp(-x*x)*(x*x)*2.6 for x in x1]
        y1err = [y*0.25 for y in y1]
        self.customPlot.graph(1).setData(x1, y1)
        errorBars.setData(y1err, y1err)

        x2 = [i/250.0*3*math.pi for i in range(250)]
        y2 = [math.sin(x*12)*math.cos(x)*10 for x in x2]
        self.customPlot.graph(2).setData(x2, y2)

        x3 = x2
        y3 = [math.cos(x)*10 for x in x3]
        self.customPlot.graph(3).setData(x3, y3)

        x4 = [i/250.0*100-50 for i in range(250)]
        y4 = [0.01*x*x + 1.5*(random.random()-0.5) + 1.5*math.pi for x in x4]
        self.customPlot.graph(4).setData(x4, y4)

        # activate top and right axes, which are invisible by default:
        self.customPlot.xAxis2.setVisible(True)
        self.customPlot.yAxis2.setVisible(True)

        # set ranges appropriate to show data:
        self.customPlot.xAxis.setRange(0, 2.7)
        self.customPlot.yAxis.setRange(0, 2.6)
        self.customPlot.xAxis2.setRange(0, 3.0*math.pi)
        self.customPlot.yAxis2.setRange(-70, 35)

        # set pi ticks on top axis:
        self.customPlot.xAxis2.setTicker(QCPAxisTickerPi())

        # add title layout element:
        self.customPlot.plotLayout().insertRow(0)
        self.customPlot.plotLayout().addElement(0, 0, QCPTextElement(self.customPlot, "Way too many graphs in one plot", QFont("sans", 12, QFont.Bold)))

        # set labels:
        self.customPlot.xAxis.setLabel("Bottom axis with outward ticks")
        self.customPlot.yAxis.setLabel("Left axis label")
        self.customPlot.xAxis2.setLabel("Top axis label")
        self.customPlot.yAxis2.setLabel("Right axis label")

        # make ticks on bottom axis go outward:
        self.customPlot.xAxis.setTickLength(0, 5)
        self.customPlot.xAxis.setSubTickLength(0, 3)

        # make ticks on right axis go inward and outward:
        self.customPlot.yAxis2.setTickLength(3, 3)
        self.customPlot.yAxis2.setSubTickLength(1, 1)

if __name__ == '__main__':
    app = QApplication(sys.argv)
    mainForm = MainForm()
    mainForm.show()
    sys.exit(app.exec())

在这里插入图片描述

对数轴演示

Logarithmic axis scaling. Note correct display of the sine function crossing zero in negative infinity

import sys, math

from PyQt5.QtWidgets import QApplication, QGridLayout, QWidget
from PyQt5.QtGui import QPen, QColor, QBrush
from PyQt5.QtCore import Qt
from QCustomPlot_PyQt5 import QCustomPlot, QCPGraph, QCPGraphData, QCP, QCPAxis, QCPAxisTickerLog

class MainForm(QWidget):

    def __init__(self) -> None:
        super().__init__()

        self.setWindowTitle("对数轴演示")
        self.resize(600,400)

        self.customPlot = QCustomPlot(self)
        self.gridLayout = QGridLayout(self).addWidget(self.customPlot)

        self.customPlot.setNoAntialiasingOnDrag(True) # more performance/responsiveness during dragging
        self.customPlot.addGraph()
        pen = QPen(QColor(255,170,100))
        pen.setWidth(2)
        pen.setStyle(Qt.DotLine)
        self.customPlot.graph(0).setPen(pen)
        self.customPlot.graph(0).setName("x")

        self.customPlot.addGraph()
        self.customPlot.graph(1).setPen(QPen(Qt.red))
        self.customPlot.graph(1).setBrush(QBrush(QColor(255, 0, 0, 20)))
        self.customPlot.graph(1).setName("-sin(x)exp(x)")

        self.customPlot.addGraph()
        self.customPlot.graph(2).setPen(QPen(Qt.blue))
        self.customPlot.graph(2).setBrush(QBrush(QColor(0, 0, 255, 20)))
        self.customPlot.graph(2).setName(" sin(x)exp(x)")

        self.customPlot.addGraph ()
        pen = QPen(QColor(0,0,0))
        pen.setWidth(1)
        pen.setStyle(Qt.DashLine)
        self.customPlot.graph(3).setPen(pen)
        self.customPlot.graph(3).setBrush(QBrush(QColor(0,0,0,15)))
        self.customPlot.graph(3).setLineStyle(QCPGraph.lsStepCenter)
        self.customPlot.graph(3).setName("x!")

        dataCount = 200
        dataFactorialCount = 21
        dataLinear = [QCPGraphData() for i in range(dataCount)]
        dataMinusSinExp = [QCPGraphData() for i in range(dataCount)]
        dataPlusSinExp = [QCPGraphData() for i in range(dataCount)]
        dataFactorial = [QCPGraphData() for i in range(dataFactorialCount)]
        for i in range(dataCount):
            dataLinear[i].key = i/10.0
            dataLinear[i].value = dataLinear[i].key
            dataMinusSinExp[i].key = i/10.0
            dataMinusSinExp[i].value = -math.sin(dataMinusSinExp[i].key)*math.exp(dataMinusSinExp[i].key)
            dataPlusSinExp[i].key = i/10.0
            dataPlusSinExp[i].value = math.sin(dataPlusSinExp[i].key)*math.exp(dataPlusSinExp[i].key)
        for i in range(dataFactorialCount):
            dataFactorial[i].key = i
            dataFactorial[i].value = 1.0
            for k in range(1, i+1):
                dataFactorial[i].value *= k

        self.customPlot.graph(0).data().set(dataLinear)
        self.customPlot.graph(1).data().set(dataMinusSinExp)
        self.customPlot.graph(2).data().set(dataPlusSinExp)
        self.customPlot.graph(3).data().set(dataFactorial)
        
        self.customPlot.xAxis.grid().setSubGridVisible(True)
        self.customPlot.yAxis.grid().setSubGridVisible(True)
        self.customPlot.yAxis.setScaleType(QCPAxis.stLogarithmic)
        self.customPlot.yAxis2.setScaleType(QCPAxis.stLogarithmic)
        logTicker = QCPAxisTickerLog()
        self.customPlot.yAxis.setTicker(logTicker)
        self.customPlot.yAxis2.setTicker(logTicker)
        self.customPlot.yAxis.setNumberFormat("eb") # e = exponential, b = beautiful decimal powers
        self.customPlot.yAxis.setNumberPrecision(0) # makes sure "1*10^4" is displayed only as "10^4"
        self.customPlot.xAxis.setRange(0, 19.9)
        self.customPlot.yAxis.setRange(1e-2, 1e10)
        # make range draggable and zoomable:
        self.customPlot.setInteractions(QCP.Interactions(QCP.iRangeDrag | QCP.iRangeZoom))
        # make top right axes clones of bottom left axes:
        self.customPlot.axisRect().setupFullAxesBox()
        # connect signals so top and right axes move in sync with bottom and left axes:
        self.customPlot.xAxis.rangeChanged.connect(self.customPlot.xAxis2.setRange)
        self.customPlot.yAxis.rangeChanged.connect(self.customPlot.yAxis2.setRange)

        self.customPlot.legend.setVisible(True)
        self.customPlot.legend.setBrush(QBrush(QColor(255,255,255,150)))
        self.customPlot.axisRect().insetLayout().setInsetAlignment(0, Qt.AlignLeft|Qt.AlignTop) # make legend align in top left corner or axis rect

if __name__ == '__main__':
    app = QApplication(sys.argv)
    mainForm = MainForm()
    mainForm.show()
    sys.exit(app.exec())

在这里插入图片描述

结语

还剩下一些示例,待续篇更新!~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1833678.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 内存访问热度分析(100分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 &#x1f…

《EDA技术》十六选一数据选择器实验报告

摘 要: 本实验通过Quartus软件完成对十六选一数据选择器的四种VHDL程序,分别为if;case;when else;when select四种方式,实现波形图的生成。同时,加深对VHDL语言的理解和使用多种方式完成任务的能力,提高实验操作能力。…

[WTL/Win32]_[中级]_[MVP架构在实际项目中应用的地方]

场景 在开发Windows和macOS的界面软件时,Windows用的是WTL/Win32技术,而macOS用的是Cocoa技术。而两种技术的本地语言一个主打是C,另一个却是Object-c。界面软件的源码随着项目功能增多而增多,这就会给同步Windows和macOS的功能造成很大负担…

vue:对三种获取更新后的dom的方式进行分析

一、问题分析 由于vue的异步更新机制,我们在同步代码中是无法获取到更新后的dom的信息的 针对这个问题,我们有三种解决方案获取更新后的dom: 1.nextTick() 2.setTimeout() 3.在微任务中获取 因为更新是在同步任务结束后,执行微任务之前…

Java项目常用包的分层和作用

一个好的Java项目要有好的分层,不仅简洁明了,而且降低代码的耦合度,方便维护和升级。 web层 在Java Web应用程序中,Web层通常指的是处理HTTP请求和响应的层次,它直接与客户端(通常是Web浏览器&#xff09…

【idea】gradle多模块构建项目内存溢出终止问题解决

背景 idea构建多模块项目,构建报错 Daemon is stopping immediately JVM garbage collector thrashing and after running out of JVM memory 解决 进到下图目录下 在文件管理中进入上面目录添加gradle.properties文件,内容如下 org.gradle.jvmargs-…

学校校园考场电子钟,同步授时,助力考场公平公正-讯鹏科技

随着教育技术的不断发展,学校对于考场管理的需求也日益提高。传统的考场时钟往往存在时间误差、维护不便等问题,这在一定程度上影响了考试的公平性和公正性。为了解决这些问题,越来越多的学校开始引入考场电子钟,通过同步授时技术…

【深度学习】GPT-2,Language Models are Unsupervised Multitask Learners,【语言建模】

论文:https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf 文章目录 摘要引言方法2.1 训练数据集2.2 输入表示2.3 模型3. 实验3.1 语言建模3.2 Children’s Book Test3.3 LAMBADA3.4 Winograd Sc…

兼容MacOS和FreeBSD软件包的开源ravynOS操作系统

ravynOS 是一个新型的操作系统项目,致力于在 x86-64(终极目标是同时实现 ARM)平台上提供与 macOS 类似的体验和兼容性。它基于坚若磐石的 FreeBSD、现有的开源代码和锦上添花的新代码构建。 主要设计目标: 与 macOS 应用程序的源…

python基础语法 002 - 4 字符串

1 字符串 字符串:引号括起来的数据类型 # 双引号 a "yuze wang"# 单引号 a ’yuze wang‘# 三引号 a ’‘’yuze‘‘’ a """yuze"""注意:所有格式表示都是半角,全角会报错 1.1 引号表示 …

C++及cmake语法介绍

c/cmake学习 文章目录 c/cmake学习1. c1.1 基本模型1.1.1 for循环1.1.2 main函数1.1.2 带参数函数编译函数 2. CMAKE2.1 相关命令2.1.1 编译基本命令2.1.2 动态库静态库编译2.1.3 消息输出2.1.4 cmake变量常见参数1. 设置构建类型2. 设置编译器标志3. 指定编译器4. 设置安装路径…

【PB案例学习笔记】-22制作一个语音朗读金额小应用

写在前面 这是PB案例学习笔记系列文章的第22篇,该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习,提高编程技巧,以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码,小凡都上传到了gite…

计算机网络:3数据链路层

数据链路层 概述封装成帧和透明传输帧透明传输(填充字节或比特)差错检测奇偶校验循环冗余校验CRC Cyclic Redundancy Check 可靠传输停止-等待协议回退n帧协议(滑动窗口协议)选择重传协议 点对点协议PPP共享式以太网网络适配器&am…

Spring系统学习 -Spring IOC 的XML管理Bean之P命名空间、实现引入MySQL外部链接属性文件

P命名空间 在Spring框架中&#xff0c;P命名空间是一种用于简化XML配置文件中属性注入的方式。通过引入P命名空间&#xff0c;可以使用更简洁的语法来设置bean的属性值&#xff0c;而无需显式地使用<property>子元素。这使得XML配置文件更加简洁和易于阅读。 要在Sprin…

【vue3|第9期】Vue3中watch监视的深度解读

日期&#xff1a;2024年6月10日 作者&#xff1a;Commas 签名&#xff1a;(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释&#xff1a;如果您觉得有所帮助&#xff0c;帮忙点个赞&#xff0c;也可以关注我&#xff0c;我们一起成长&#xff1b;如果有不对的地方&#xf…

期末复习GGG-----查找子串

郭的 char *search( char *s, char *t ){int i0;while(s[i]){int j0;if(s[i]t[0]){while(s[ij]t[j]&&t[j]){j;}if(t[j]\0)return si;}i;}return NULL; } AI的 #include <stdio.h> #include <string.h> #define MAXS 30char *search(char *s, char *t);in…

Matlab使用Simulink仿真实现AM和BPSK信号的解调

前言 本篇实现了基于AM和BPSK调制的通信系统&#xff0c;采用Bernoulli Binary Generator生成随机二元序列&#xff0c;码元速率为0.5秒/个。AM调制使用Sine Wave模块生成载波&#xff0c;频率40Hz&#xff0c;相位π/2。BPSK调制通过Switch模块切换相位0和π的载波。信号传输…

红利之外的A股底仓选择:A50

内容提要 华泰证券指出&#xff0c;当前指数层面下行风险不大&#xff0c;市场再入震荡期下&#xff0c;可关注三条配置线索&#xff1a;1&#xff09;A50为代表的产业巨头&#xff1b;2&#xff09;以家电/食饮/物流/出版为代表的稳健消费龙头&#xff0c;3&#xff09;消费电…

使用 Iceberg、Tabular 和 MinIO 构建现代数据架构

现代数据环境需要一种新型的基础架构&#xff0c;即无缝集成结构化和非结构化数据、轻松扩展并支持高效的 AI/ML 工作负载的基础架构。这就是现代数据湖的用武之地&#xff0c;它为您的所有数据需求提供了一个中心枢纽。然而&#xff0c;构建和管理有效的数据湖可能很复杂。 这…

【离散化 二维差分】850. 矩形面积 II

本文涉及知识点 离散化 二维差分 LeetCode850. 矩形面积 II 给你一个轴对齐的二维数组 rectangles 。 对于 rectangle[i] [x1, y1, x2, y2]&#xff0c;其中&#xff08;x1&#xff0c;y1&#xff09;是矩形 i 左下角的坐标&#xff0c; (xi1, yi1) 是该矩形 左下角 的坐标…