揭秘最强气象武器的库,SPEI-Python不可思议之处.

news2024/12/25 23:52:31

  • spei-python是一个专门用于计算标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index,SPEI)的Python库.SPEI是一种综合考虑降水和潜在蒸散发的干旱指数,用于评估干旱的严重程度和持续时间.

安装

## 可以使用 pip 来安装 spei-python:
pip install spei-python

示例

1.基本用法

import numpy as np
from spei import SPEI

# 示例数据
precipitation = np.array([50, 40, 45, 60, 30, 55, 70, 80, 90, 60, 50, 40])
evapotranspiration = np.array([20, 25, 30, 35, 20, 25, 30, 35, 40, 45, 50, 55])

# 计算SPEI
spei = SPEI(precipitation, evapotranspiration, scale=3)
print(spei)

特性

简单易用:

  • 提供了简单的API来计算SPEI.

灵活性高:

  • 支持自定义时间尺度.

科学性强:

  • 基于标准化降水和蒸散发数据,提供准确的干旱评估.

优缺点

优点

易于集成:

  • 可以方便地集成到现有的数据分析和气象研究工作流中.

专业性强:

  • 专门用于干旱评估,结果科学可靠.

高效计算:

  • 能够快速计算不同时间尺度上的SPEI.

缺点

数据需求:

  • 需要同时提供降水和蒸散发数据,数据获取可能存在难度.

应用范围有限:

  • 主要用于气象和农业领域,其他领域应用较少.

使用场景

气象研究:

  • 用于评估干旱的严重程度和趋势.

农业管理:

  • 帮助农民和农业专家制定抗旱措施.

水资源管理:

  • 用于水资源调度和管理决策.

高级功能

1.不同时间尺度的SPEI计算

# 计算6个月尺度的SPEI
spei_6 = SPEI(precipitation, evapotranspiration, scale=6)
print(spei_6)

2.结合其他气象数据分析

import matplotlib.pyplot as plt

# 示例数据
months = np.arange(1, 13)
temperature = np.array([5, 7, 10, 15, 20, 25, 30, 28, 22, 17, 10, 5])

# 计算SPEI
spei = SPEI(precipitation, evapotranspiration, scale=3)

# 可视化
plt.figure(figsize=(10, 5))
plt.plot(months, spei, label='SPEI')
plt.plot(months, temperature, label='Temperature')
plt.xlabel('Month')
plt.ylabel('Value')
plt.title('SPEI and Temperature Over Time')
plt.legend()
plt.show()

总结

  • spei-python 是一个用于计算标准化降水蒸散指数(SPEI)的专业库,适用于气象研究、农业管理和水资源管理等领域.它提供了简洁易用的API,能够高效地计算不同时间尺度上的SPEI.尽管其应用范围主要集中在气象和农业领域,但在这些领域中,它能够提供科学可靠的干旱评估结果.通过结合其他气象数据,可以更全面地分析和应对干旱问题.

  • 感谢大家的关注和支持!想了解更多关于电影方面的知识可以关注微信公众号:丹哥说影评,扫一扫,同时,如果你觉得这篇文章对你有帮助,不妨点个赞,并点击关注.动动你发财的手,万分感谢!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1829002.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C | 在ubuntu22下开发的一些配置

目录 VScode设置 要下载的插件: 卸载VScode的话就是哪装的哪删。 浅用gcc 预处理指令 使用gcc 语言编译过程 1. 预处理(Preprocessing) 2. 编译(Compilation) 3. 汇编(Assembly) 4. …

光明网发稿投稿流程与要求,光明日报如何投稿?附光明网多少钱(价格表)

对于想要在光明网发稿的作者来说,媒介多多网发稿平台是一个绝佳的投稿选择。光明网作为国内一流的新闻媒体平台,其严谨的文章审核标准和广泛的读者基础吸引着无数作者。然而,由于其严格的发稿标准,一些作者可能会遇到一些困难&…

盛世古董乱世金-数据库稳定到底好不好?

是不是觉得这个还用问? 是的要问。因为这个还是一个有争议的问题。但是争议双方都没有错。这就像辩论,有正反双方。大家都说的有道理,但是很难说谁对谁错。 正方观点:数据库稳定好 其实这个是用户的观点,应用开发人…

目标检测算法SSD与FasterRCNN

目标检测算法SSD与FasterRCNN SSD:( Single Shot MultiBox Detector)特点是在不同特征尺度上预测不同尺度的目标。 SSD网络结构 首先对网络的特征进行说明:输入的图像是300x300的三通道彩色图像。 网络的第一个部分贯穿到Vgg16模型 Conv5的…

大数据入门实践一:mac安装Hadoop,Hbase

一、安装Hadoop 安装hadoop参考此文,关键点是安装JDK和Hadoop的配置,为避免引用文章变收费,我把关键信息摘录如下: jdk安装和配置就不说了,hadoop安装过程: 1.设置SSH免密 1. 打开系统偏好设置&#xf…

芯片验证分享8 —— 代码审查2

大家好,我是谷公子,上节课给大家讲了代码审查中的代码正向检查,今天我们来讲代码审查的其他方法。 今天介绍的检查方法有: 代码反向检查 桌面检查 同行评审 可用性验证 这些验证方法可以应用在芯片开发的任何阶段。代码审查…

【网络安全的神秘世界】AppScan安装及使用指南

🌝博客主页:泥菩萨 💖专栏:Linux探索之旅 | 网络安全的神秘世界 | 专接本 https://www.hcl-software.com/appscan AppScan是一种综合型漏洞扫描工具,采用SaaS解决方案,它将所以测试功能整合到一个服务中&a…

Day 24:100301. 构成整天的下标对数目II

Leetcode 100301. 构成整天的下标对数目II 给你一个整数数组 hours&#xff0c;表示以 **小时 **为单位的时间&#xff0c;返回一个整数&#xff0c;表示满足 i < j 且 hours[i] hours[j] 构成 **整天 **的下标对 i, j 的数目。 **整天 **定义为时间持续时间是 24 小时的 *…

FreeRTOS队列(queue)

队列(queue)可以用于"任务到任务"、 "任务到中断"、 "中断到任务"直接传输信息。 1、队列的特性 1、1常规操作 队列的简化操如下图所示&#xff0c;从此图可知&#xff1a; 队列中可以包含若干数据&#xff1a;队列中有若干项&#xff0c;这…

2024上半年软考---江苏考区最先公布成绩

经历了考试之后&#xff0c;最期待的就是考试成绩的公布了&#xff0c;最好的成绩是45、45、45.只要过了分数线就满足了。下面我们来看看各大考区的分数的公布时间。 提前说下江苏考区的时间比较早&#xff0c;我就是江苏考区的&#xff0c;希望本次可以顺利通过考试。 2024年…

FPGA----petalinux开机启动自定义脚本/程序的保姆级教程

1、petalinux的重启命令&#xff1a;reboot、关机命令&#xff1a;shutdown -h now、开机按键&#xff1a;在关机后&#xff0c;ZCU106的右上角指示灯会变为红色&#xff0c;此时按下左上角第一个按键可启动操作系统。 2、好久没写博客了&#xff0c;本次给大家带来的是petalin…

原生Hadoop3.X高可用配置方式

Hadoop3.X版本&#xff0c;在2017年左右就有了第一个alpha版本&#xff0c;但是那个时候刚出来&#xff0c;所以没有人使用&#xff0c;到2018年3.0.0版本作为第一个3&#xff0c;X正式发布&#xff0c;截止当前本文书写时间&#xff0c;3.X版本已经发展到了3.4&#xff0c;在H…

用python纯手写一个日历

一、代码 # 月份名称数组 months ["January", "February", "March", "April", "May", "June","July", "August", "September", "October", "November", &qu…

Unity C#调用Android,IOS震动功能

最近在Unity上需要很原生移动端进行交互&#xff0c; 原理&#xff1a;新建一个android项目&#xff0c;把生成的app module给干掉&#xff0c;然后留下一个vibrationPlugin module&#xff0c;在这个module下写android震动代码&#xff0c;将这个android工程构建出来的 aar移…

26.1 WEB框架介绍

1. Web应用程序 1.1 应用程序有两种模式 应用程序的架构模式主要分为两种: C/S (客户端/服务器端)和B/S(浏览器/服务器端). * 1. C/S模式, 即客户端/服务器模式(Client/Server Model): 是一种分布式计算模式.它将应用程序的功能划分为客户端和服务器端两部分.在这种模式下, 客…

【教程】设置GPU与CPU的核绑(亲和力Affinity)

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你&#xff0c;欢迎[点赞、收藏、关注]哦~ 简单来说&#xff0c;核绑&#xff0c;或者叫亲和力&#xff0c;就是将某个GPU与指定CPU核心进行绑定&#xff0c;从而尽可能提高效率。 推荐与进程优先…

虚拟机Ubuntu系统安装JDK以及配置环境不懂随时私

1、在虚拟机中打开终端&#xff1a; 如果你使用的是 Linux 发行版&#xff08;如 Ubuntu、CentOS&#xff09;&#xff0c;打开终端窗口。 2、使用 wget 命令下载 JDK&#xff1a; 首先找到你想要下载的 JDK 版本的下载链接。通常&#xff0c;你可以在 Oracle 官方网站或者 Op…

讲解 Faster R_CNN原理:

Fast R-CNN改进 上图为论文中的图片 先使用CNN网络获得整体的特征图&#xff1a;这里可以卷积共享&#xff0c;加快速度 然后将原图中的Region Proposals(区域)映射到Feature Map中&#xff0c;获得一系 列RoI(感兴趣区域) 然后不再对每个RoI分别进行分类回归&#xff0c;而是通…

无限可能LangChain——概念指南之架构

本节包含对 LangChain 关键部分的介绍。 架构 LangChain 作为一个框架由多个包组成。 langchain-core 该包包含不同组件的基本抽象以及将它们组合在一起的方法。此处定义了LLM、向量存储、检索器等核心组件的接口。这里没有定义第三方集成。依赖项有目的地保持非常轻量级。…

DenseNet完成Cifer10任务的效果验证

本文章是针对论文《2017-CVPR-DenseNet-Densely-Connected Convolutional Networks》中实验的复现&#xff0c;使用了几乎相同的超参数 目录 一、论文中的实验 1.准确率 2.参数效率 3.不同网络结构之间的比较 二、超参数: 三、复现的实验结果&#xff1a; 1.DenseNet20…