测试 halcon算子 derivate_gauss 高斯一阶导数卷积

news2025/1/13 3:05:32

参上了 matlab fileexchange 有人上传了高斯 dx,dy一阶导卷积代码

卷积核的计算我修改成了核元素绝对值求做分母 归一化

和halcon的 derivate_gauss算子的计算结果对别如下

还是不知道怎么做到两者结果一致.

测试图像:

我的:

halcon的:

获取两份图像的灰度值到数组并做对应位置灰度值差值比较:

我的:

[0.0, -0.0171127, -0.11751, -0.465375, -0.150412, 0.543371, 0.593301, -0.107628, -0.970025, -1.41046, -0.960299, -0.176343, -1.27435, -5.1756, -10.3727, -9.90589, 0.61225, 10.9554, 9.85048, 0.0, 0.0, 0.208356, 0.115327, -0.308402, -0.150885, 0.379145, 0.4111, -0.118863, -0.669842, -1.06148, -0.924356, -0.424523, -1.25557, -4.80264, -10.2093, -10.2431, 0.166427, 10.8936, 10.0133, 0.0, 0.0, 0.320794, 0.203955, -0.189211, -0.172259, 0.139072, 0.16295, -0.148289, -0.238421, -0.417654, -0.655456, -0.712105, -1.35891, -4.49443, -10.1022, -10.52, -0.144598, 10.9706, 10.2562, 0.0, 0.0, 0.113014, -0.0446385, -0.243567, -0.115624, 0.108654, 0.114228, -0.0554365, -0.0396674, -0.111725, -0.375975, -0.782387, -1.6152, -4.61284, -10.0419, -10.2006, 0.199951, 11.0875, 10.1699, 0.0, 0.0, 0.13843, 0.090423, -0.0464684, 0.0398678, 0.184565, 0.242966, 0.128786, -0.125661, -0.306733, -0.400467, -0.844742, -1.9809, -5.06256, -9.96049, -9.31551, 1.09789, 11.0924, 9.61384, 0.0, 0.0, 0.316735, 0.527218, 0.334401, 0.040415, 0.0290709, 0.204294, 0.0847642, -0.298032, -0.462267, -0.469856, -0.913691, -2.20446, -5.44862, -9.99578, -8.60683, 1.9778, 11.2732, 9.25204, 0.0, 0.0, 0.355216, 0.680552, 0.360028, -0.154394, -0.0761677, 0.153896, -0.0722301, -0.34628, -0.35859, -0.264544, -0.666337, -2.0332, -5.38378, -10.0376, -8.91902, 1.52949, 11.0683, 9.34834, 0.0, 0.0, 0.00813668, 0.145338, -0.0566561, -0.162529, 0.282673, 0.472511, -0.133688, -0.608853, -0.503001, -0.12297, -0.262847, -1.56996, -5.00265, -9.87109, -9.30654, 0.689996, 10.412, 9.23679, 0.0, 0.0, -0.265113, -0.223993, -0.324266, -0.209522, 0.407827, 0.603787, -0.164638, -0.752346, -0.594309, -0.145571, -0.148656, -1.33127, -4.74882, -9.61469, -9.0573, 0.715514, 10.0906, 8.95648, 0.0, 0.0, -0.0866533, 0.0589123, -0.304772, -0.498769, 0.23971, 0.621732, -0.162745, -0.693168, -0.415723, -0.119597, -0.310689, -1.28379, -4.28373, -9.1567, -9.06842, 0.412215, 9.82283, 8.88992, 0.0, 0.0, 0.0460112, 0.30525, -0.191774, -0.566615, 0.17624, 0.494347, -0.37077, -0.751868, -0.237939, -0.0175654, -0.458492, -1.26254, -3.86987, -8.78384, -9.21286, 0.00469169, 9.6488, 8.91869, 0.0, 0.0, -0.0730904, 0.239958, -0.0973189, -0.32265, 0.282875, 0.259192, -0.703655, -0.99835, -0.352403, 0.136638, -0.198985, -1.18563, -3.93559, -8.79819, -9.12675, 0.0979309, 9.81818, 9.03784, 0.0, 0.0, -0.284285, -0.0825046, -0.296485, -0.24846, 0.407888, 0.345745, -0.539637, -0.962332, -0.60297, 0.0135667, 0.0321525, -0.914516, -3.88131, -9.00191, -9.24455, 0.259426, 10.0775, 9.10933, 0.0, 0.0, -0.538959, -0.372508, -0.503989, -0.512134, 0.232151, 0.602174, 0.0352789, -0.550827, -0.608777, -0.201935, -0.178455, -0.972721, -3.86122, -9.12581, -9.26903, 0.519443, 10.2612, 9.01412, 0.0, 0.0, -0.796822, -0.537023, -0.34667, -0.351541, 0.264936, 0.629153, 0.169248, -0.279282, -0.427791, -0.265414, -0.422364, -1.24366, -3.89766, -8.97421, -9.30103, 0.325586, 10.1243, 9.06293, 0.0, 0.0, -0.696778, -0.517929, -0.164338, 0.136977, 0.668173, 0.573728, -0.0698864, -0.321661, -0.184646, 0.0436396, -0.197497, -1.2991, -4.0584, -8.91166, -9.31965, 0.230907, 10.1942, 9.30744, 0.0, 0.0, -0.19155, -0.0666285, -0.0027456, 0.246543, 0.705462, 0.479134, -0.180383, -0.473669, -0.115906, 0.436369, 0.341068, -1.02276, -4.1881, -8.70386, -8.16763, 1.89555, 11.457, 9.79718, 0.0, 0.0, 0.274354, 0.517338, 0.180516, -0.0587984, 0.289945, 0.493964, 0.101619, -0.361508, -0.143207, 0.369088, 0.320784, -0.831343, -3.57933, -7.04331, -4.92169, 5.52175, 13.7778, 10.5316, 0.0, 0.0, 0.631951, 0.882481, 0.138202, -0.640499, -0.420596, 0.36245, 0.442807, -0.0482875, -0.0997617, 0.0798276, -0.122345, -1.01099, -2.78475, -4.42388, -0.267066, 10.3771, 16.5177, 11.1477, 0.0, 0.0, 0.778102, 1.0003, 0.0543812, -0.979057, -0.868641, 0.135686, 0.521734, 0.130132, -0.0258657, -0.0458021, -0.384789, -1.2152, -2.51246, -3.10354, 2.19503, 12.9358, 17.8852, 11.3807, 0.0]

halcon的:

[0.0, 0.00286366, -0.0790541, -0.301582, -0.0956241, 0.361102, 0.392685, -0.0839792, -0.671474, -0.974847, -0.685607, -0.217952, -1.02633, -3.79819, -7.35155, -6.87377, 0.406537, 7.55653, 6.88076, 0.0, 0.0, 0.137308, 0.0645011, -0.20418, -0.0978744, 0.255895, 0.277404, -0.0874453, -0.480412, -0.746559, -0.651243, -0.361153, -1.01696, -3.58005, -7.2591, -7.07718, 0.141034, 7.51775, 6.97791, 0.0, 0.0, 0.206501, 0.124906, -0.128989, -0.112849, 0.0981371, 0.111574, -0.0947789, -0.185514, -0.317371, -0.471186, -0.536014, -1.08356, -3.38547, -7.18347, -7.2529, -0.0573025, 7.56126, 7.12873, 0.0, 0.0, 0.0820605, -0.0200196, -0.155739, -0.0771684, 0.0759264, 0.0824282, -0.0290115, -0.0420627, -0.104709, -0.291013, -0.588241, -1.25817, -3.46987, -7.13333, -7.02949, 0.181273, 7.63969, 7.07032, 0.0, 0.0, 0.0985283, 0.0710975, -0.0187323, 0.0260195, 0.123463, 0.164335, 0.0805792, -0.092918, -0.218767, -0.307969, -0.643596, -1.50833, -3.76341, -7.06849, -6.43466, 0.790312, 7.66888, 6.72876, 0.0, 0.0, 0.224165, 0.361002, 0.229101, 0.0321221, 0.0282326, 0.136068, 0.0489568, -0.203104, -0.320415, -0.349413, -0.686953, -1.66369, -4.01401, -7.07739, -5.97111, 1.35086, 7.78439, 6.50691, 0.0, 0.0, 0.245333, 0.447395, 0.240338, -0.0828919, -0.0319901, 0.109651, -0.0496896, -0.252779, -0.267651, -0.215417, -0.516831, -1.54228, -3.96865, -7.10486, -6.15985, 1.0698, 7.63436, 6.53821, 0.0, 0.0, 0.0142813, 0.0984331, -0.0319448, -0.0989224, 0.187414, 0.305131, -0.0914771, -0.418846, -0.353953, -0.115433, -0.245696, -1.22921, -3.71303, -7.00238, -6.41217, 0.528102, 7.2016, 6.44413, 0.0, 0.0, -0.16454, -0.14733, -0.219313, -0.142404, 0.273008, 0.401159, -0.109887, -0.515039, -0.414136, -0.121039, -0.160453, -1.05557, -3.51337, -6.81076, -6.27395, 0.491493, 6.96678, 6.25985, 0.0, 0.0, -0.0555199, 0.0194483, -0.214136, -0.320463, 0.165842, 0.404348, -0.11473, -0.479938, -0.303261, -0.104286, -0.256731, -1.00812, -3.1984, -6.50378, -6.26746, 0.294344, 6.78122, 6.2001, 0.0, 0.0, 0.0357159, 0.183683, -0.135095, -0.360271, 0.117133, 0.31096, -0.256551, -0.522923, -0.194121, -0.0348458, -0.334128, -0.984137, -2.92973, -6.25959, -6.34923, 0.0373512, 6.66277, 6.21462, 0.0, 0.0, -0.0391857, 0.139725, -0.0772477, -0.208043, 0.184323, 0.164836, -0.470848, -0.684792, -0.267337, 0.0581031, -0.170571, -0.917849, -2.94572, -6.26033, -6.3098, 0.0885262, 6.7697, 6.29478, 0.0, 0.0, -0.18779, -0.0769081, -0.207341, -0.170407, 0.25863, 0.226921, -0.360523, -0.661078, -0.420716, -0.0154985, -0.0281513, -0.749647, -2.91879, -6.38873, -6.3746, 0.208085, 6.94506, 6.34682, 0.0, 0.0, -0.365518, -0.280721, -0.349581, -0.328921, 0.161766, 0.395136, 0.0105877, -0.38955, -0.42101, -0.159048, -0.162161, -0.78775, -2.91071, -6.46208, -6.39081, 0.362532, 7.06126, 6.30277, 0.0, 0.0, -0.529335, -0.391131, -0.26082, -0.220412, 0.196724, 0.426461, 0.114726, -0.20395, -0.296473, -0.194275, -0.319435, -0.962622, -2.94092, -6.37876, -6.41441, 0.243902, 6.98251, 6.32988, 0.0, 0.0, -0.460975, -0.357795, -0.123462, 0.0969163, 0.449458, 0.395101, -0.0317531, -0.225538, -0.136575, 0.0177766, -0.165796, -0.992892, -3.04236, -6.34029, -6.38668, 0.242064, 7.07065, 6.49558, 0.0, 0.0, -0.129346, -0.048468, 0.00598212, 0.177542, 0.475248, 0.338683, -0.105016, -0.312601, -0.0803541, 0.278146, 0.180618, -0.810989, -3.08092, -6.11888, -5.53404, 1.42245, 7.96973, 6.86443, 0.0, 0.0, 0.197748, 0.346926, 0.127132, -0.0302968, 0.195883, 0.33379, 0.0727752, -0.231824, -0.091922, 0.241826, 0.179364, -0.673336, -2.63529, -4.90318, -3.22787, 3.99197, 9.63655, 7.41989, 0.0, 0.0, 0.441881, 0.598159, 0.0992456, -0.423639, -0.27906, 0.232817, 0.292092, -0.0219293, -0.0634963, 0.0498856, -0.110425, -0.767999, -2.04983, -3.05787, -0.0170716, 7.33341, 11.5758, 7.91567, 0.0, 0.0, 0.539733, 0.678084, 0.0436538, -0.649597, -0.568739, 0.0936762, 0.348525, 0.0935577, -0.0205136, -0.0372191, -0.282634, -0.885602, -1.82954, -2.13713, 1.64389, 9.05173, 12.5258, 8.1143, 0.0]

差值:

[0.0, 0.0199764, 0.0384561, 0.163793, 0.0547874, -0.182269, -0.200615, 0.0236485, 0.29855, 0.435614, 0.274692, -0.0416085, 0.248027, 1.37741, 3.02111, 3.03211, -0.205712, -3.39891, -2.96972, 0.0, 0.0, -0.0710479, -0.0508262, 0.104222, 0.0530104, -0.12325, -0.133696, 0.0314179, 0.18943, 0.314919, 0.273113, 0.0633705, 0.238615, 1.22259, 2.95016, 3.16593, -0.0253927, -3.37589, -3.0354, 0.0, 0.0, -0.114293, -0.0790493, 0.060222, 0.0594094, -0.0409349, -0.0513758, 0.0535105, 0.0529066, 0.100283, 0.184271, 0.176091, 0.275348, 1.10897, 2.91872, 3.2671, 0.0872955, -3.40938, -3.12742, 0.0, 0.0, -0.030953, 0.0246188, 0.0878278, 0.0384558, -0.0327278, -0.0317995, 0.026425, -0.00239531, 0.00701655, 0.0849619, 0.194146, 0.357037, 1.14298, 2.90858, 3.17111, -0.0186787, -3.4478, -3.0996, 0.0, 0.0, -0.0399018, -0.0193255, 0.0277361, -0.0138483, -0.0611017, -0.0786309, -0.0482067, 0.032743, 0.0879666, 0.0924983, 0.201146, 0.472566, 1.29915, 2.892, 2.88085, -0.307579, -3.42353, -2.88508, 0.0, 0.0, -0.0925702, -0.166215, -0.105301, -0.00829284, -0.00083828, -0.0682259, -0.0358073, 0.0949277, 0.141852, 0.120442, 0.226738, 0.540769, 1.43461, 2.91839, 2.63572, -0.626936, -3.48877, -2.74513, 0.0, 0.0, -0.109883, -0.233157, -0.11969, 0.0715022, 0.0441776, -0.0442449, 0.0225405, 0.0935012, 0.0909392, 0.0491273, 0.149506, 0.490917, 1.41513, 2.93278, 2.75917, -0.459694, -3.43394, -2.81013, 0.0, 0.0, 0.00614459, -0.0469047, 0.0247114, 0.0636062, -0.0952597, -0.16738, 0.0422108, 0.190006, 0.149047, 0.00753696, 0.0171512, 0.340754, 1.28962, 2.86871, 2.89438, -0.161894, -3.21041, -2.79266, 0.0, 0.0, 0.100573, 0.0766633, 0.104953, 0.067118, -0.134819, -0.202629, 0.0547512, 0.237307, 0.180173, 0.0245324, -0.0117976, 0.275699, 1.23545, 2.80393, 2.78335, -0.224021, -3.12386, -2.69662, 0.0, 0.0, 0.0311333, -0.039464, 0.0906356, 0.178306, -0.0738678, -0.217384, 0.0480156, 0.213229, 0.112461, 0.0153102, 0.0539579, 0.275674, 1.08533, 2.65292, 2.80095, -0.117871, -3.04161, -2.68982, 0.0, 0.0, -0.0102953, -0.121568, 0.0566782, 0.206344, -0.0591073, -0.183387, 0.11422, 0.228945, 0.0438185, -0.0172804, 0.124363, 0.278405, 0.940139, 2.52426, 2.86363, 0.0326595, -2.98603, -2.70407, 0.0, 0.0, 0.0339047, -0.100233, 0.0200711, 0.114607, -0.0985523, -0.0943557, 0.232807, 0.313558, 0.0850663, -0.0785351, 0.0284147, 0.267778, 0.989866, 2.53786, 2.81695, -0.00940474, -3.04848, -2.74307, 0.0, 0.0, 0.0964951, 0.00559648, 0.0891446, 0.0780527, -0.149257, -0.118824, 0.179114, 0.301254, 0.182254, -0.0290652, -0.0603038, 0.164868, 0.962518, 2.61318, 2.86995, -0.0513403, -3.13244, -2.7625, 0.0, 0.0, 0.173441, 0.0917867, 0.154408, 0.183213, -0.0703851, -0.207038, -0.0246913, 0.161277, 0.187766, 0.042887, 0.0162947, 0.184971, 0.950507, 2.66373, 2.87822, -0.156911, -3.19993, -2.71134, 0.0, 0.0, 0.267487, 0.145892, 0.08585, 0.131129, -0.0682123, -0.202693, -0.0545216, 0.0753321, 0.131318, 0.0711398, 0.10293, 0.28104, 0.956733, 2.59545, 2.88662, -0.0816842, -3.14178, -2.73305, 0.0, 0.0, 0.235803, 0.160134, 0.0408763, -0.0400609, -0.218715, -0.178627, 0.0381332, 0.0961231, 0.048071, -0.025863, 0.0317007, 0.306211, 1.01603, 2.57136, 2.93296, 0.0111569, -3.12352, -2.81186, 0.0, 0.0, 0.0622038, 0.0181605, 0.00872771, -0.069002, -0.230214, -0.140451, 0.0753671, 0.161067, 0.0355522, -0.158222, -0.16045, 0.211766, 1.10718, 2.58498, 2.63359, -0.473101, -3.48728, -2.93275, 0.0, 0.0, -0.0766059, -0.170413, -0.0533841, 0.0285016, -0.0940611, -0.160174, -0.0288434, 0.129683, 0.0512847, -0.127262, -0.14142, 0.158007, 0.944041, 2.14013, 1.69382, -1.52978, -4.14125, -3.11173, 0.0, 0.0, -0.19007, -0.284321, -0.038956, 0.21686, 0.141535, -0.129633, -0.150715, 0.0263583, 0.0362654, -0.029942, 0.0119208, 0.242992, 0.734925, 1.36601, 0.249995, -3.04374, -4.94188, -3.23203, 0.0, 0.0, -0.23837, -0.322216, -0.0107275, 0.329459, 0.299902, -0.0420101, -0.173209, -0.0365739, 0.00535204, 0.00858302, 0.102155, 0.329602, 0.68292, 0.966411, -0.551137, -3.88409, -5.35944, -3.26636, 0.0]

测试代码:

dev_close_window()
dev_open_window (0, 0, 512, 512, 'black', WindowHandle)
dev_set_window (WindowHandle)
read_image (Image, 'fabrik')
sigma:=1.0
kernel_size:=7
my_gen_derivative_filter (kernelX, 'x', sigma, kernel_size)
get_image_size (Image, Width, Height)
crop_part (Image, Image, Height/2-100, Width/2-10, 20, 20)
get_image_size (Image, Width, Height)
derivate_gauss (Image, ImageDx_halcon, 1, 'x')
gen_image_const (ImageDx_me, 'real',Width, Height)
half_size:=int(kernel_size/2)
for Row := -half_size to Height-1-half_size by 1
   for Col := -half_size to Width-1-half_size by 1
       GrayvalWeigthSum:=0
       for Row1 := 0 to kernel_size-1 by 1
           RowPixel:=Row+Row1
           if(RowPixel<0)
               RowPixel:=-RowPixel
           elseif(RowPixel>=Height)
               RowPixel:=Height+Height-RowPixel-2
           endif
           for Col1 := 0 to kernel_size-1 by 1
               ColPixel:=Col+Col1
                if(ColPixel<0)
                    ColPixel:=-ColPixel
               elseif(ColPixel>=Width)
                   ColPixel:=Width+Width-ColPixel-2
               endif
               get_grayval(kernelX,Row1,Col1,kernel_Grayval)
               get_grayval(Image,RowPixel,ColPixel,image_Grayval)
               GrayvalWeigthSum:=GrayvalWeigthSum+kernel_Grayval*image_Grayval
           endfor 
       endfor
       set_grayval(ImageDx_me, Row+half_size, Col+half_size, GrayvalWeigthSum)
   endfor 
endfor

get_region_points(Image, Rows, Columns)
get_grayval(ImageDx_halcon, Rows, Columns, Grayval_ImageDx_halcon)
get_grayval(ImageDx_me, Rows, Columns, Grayval_ImageDx_me)
Grayval_ImageDx_diff:=Grayval_ImageDx_halcon-Grayval_ImageDx_me

 


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1827776.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

利用机器学习重构视频中的人脸

引言 中国与英国的研究团队携手合作&#xff0c;开创了一种创新的视频面孔重塑技术。这项技术能够以极高的一致性对视频中的面部结构进行逼真的放大和缩小&#xff0c;且避免了常见伪影的产生。 从研究人员选取的YouTube视频样例中可见&#xff0c;经过处理后&#xff0c;女演…

nvm 管理多版本node

因有多个前端项目&#xff0c;不同项目使用的node版本不一样&#xff0c;所以在本地使用nvm管理不同的node版本。 一、安装nvm 1&#xff09;nvm理解 nvm全英文也叫node.js version management&#xff0c;是一个nodejs的版本管理工具。nvm和n都是node.js版本管理工具&#xff…

经销商的生意好坏很大程度上跟这群人有关

可以说经销商企业的营收几乎都是靠业务员跑出来的&#xff0c;无论在什么时期、无论在什么区域、无论什么市场情况、无论销售哪些商品&#xff0c;业务员都是企业销售工作的基础&#xff0c;一方面企业需要通过各种手段去提升业务员工作效率&#xff0c;让他们有能力去获得更多…

《C语言》动态内存管理

文章目录 一、动态内存分配二、关于动态内存开辟的函数1、malloc2、free3、calloc4、realloc 三、常见的动态内存的错误1、对NULL指针的解引用操作2、对动态开辟空间的越界访问3、对非动态开辟内存使用free释放4、释放free释放一块动态开辟的内存的一部分5、对同一块动态内存多…

牛客小白月赛96 解题报告 | 珂学家

前言 题解 A. 最少胜利题数 签到 n1 len(set(input())) n2 len(set(input()))if n1 < n2:n1, n2 n2, n1print (-1 if n1 6 else n1 - n2 1)B. 最少操作次数 思路: 分类讨论 只有-1,0,1,2这四种结果 特判 01, 10 n int(input()) s input()# 枚举 from collectio…

Nginx配置文件详解指令示咧Nginx配置文件深入详解与实战

本人详解 作者:王文峰,参加过 CSDN 2020年度博客之星,《Java王大师王天师》 公众号:JAVA开发王大师,专注于天道酬勤的 Java 开发问题中国国学、传统文化和代码爱好者的程序人生,期待你的关注和支持!本人外号:神秘小峯 山峯 转载说明:务必注明来源(注明:作者:王文峰…

线上教育培训办公系统系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;教师管理&#xff0c;学生管理&#xff0c;运营事件管理 教师账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;学生管理&#xff0c;作业管理&#xff0c;电…

了解统计学中不同类型的分布

目录 一、说明 二、均匀分布&#xff1a; 三、机器学习和数据科学中的均匀分布示例&#xff1a; 3.1 对数正态分布&#xff1a; 3.2 机器学习和数据科学中的对数正态分布示例&#xff1a; 四、 帕累托分布 4.1 什么是幂律&#xff1f; 4.2 机器学习和数据科学中的帕累托分布示例…

atmega8 上传程序

使用icsp 烧写时先关闭串口程序&#xff0c;与串口uart连接相关的电路勿于电脑连接 接触不良 1.使用icsp 上传 1&#xff09;可以直接上传程序 如官方示例blink 或是 serial示例 2&#xff09;可以先烧录bootload 方便下次使用串口上传程序代码 A)使用专门的icsp 上传器上传…

慧天卓特:2024年春夏之季山东旱情干旱监测分析

2024年开春以来&#xff0c;山东省平均降水量较常年同期偏少92.8%&#xff0c;同时受高温天气影响&#xff0c;山东出现了阶段性气象旱情。截至6月10日&#xff0c;山东省农作物受旱面积121.5万亩&#xff0c;农田缺墒面积262.4万亩。为全力抗旱保夏种&#xff0c;山东自5月29日…

datax的安装及使用入门

1 下载解压Datax tar包 下载到自己指定的安装目录 #wget http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz 进行解压 tar -zxvf datax.tar.gz 2 Datax验证 #修改datax/bin目录下datax.py的权限 chmod 777 datax/bin/datax.py 2.1运行官方给定的任务…

代理设计模式,框架AOP思想

文章目录 引言&#x1f92a;代理对象(Proxy)如何开发一个代理对象开发中的业务层代码冗余问题开发静态代理类动态代理 引言&#x1f92a; 代理 (proxy) &#xff0c;举个生活中常见的现象&#xff0c;在之前网路还未走进大众的时代里&#xff0c;如果我们想买一些东西&#xf…

从零开始:打造你的MySQL数据库环境

mysql下载与安装全教程 mysql简介下载安装MSI下载安装ZIP下载解压缩my.ini文件环境变量启动mysql 主页传送门 &#xff1a; &#x1f4c0; 传送 mysql简介 MySQL是一个关系型数据库管理系统&#xff0c;它是最流行的关系型数据库管理系统之一。   MySQL是一种连接型数据库&a…

NVIDIA Triton系列02-功能与架构简介

NVIDIA Triton系列02-功能与架构简介 B站&#xff1a;肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频 (bilibili.com) 博客&#xff1a;肆十二-CSDN博客 问答&#xff1a;(10 封私信 / 72 条消息) 肆十二 - 知乎 (zhihu.com) 前面文章介绍微软 Teams 会议系统、微信软件与腾讯…

零基础入门学用Arduino 第三部分(三)

重要的内容写在前面&#xff1a; 该系列是以up主太极创客的零基础入门学用Arduino教程为基础制作的学习笔记。个人把这个教程学完之后&#xff0c;整体感觉是很好的&#xff0c;如果有条件的可以先学习一些相关课程&#xff0c;学起来会更加轻松&#xff0c;相关课程有数字电路…

企业化运维(2)_nginx

###1.nginx源码安装部署### ###2.平滑升级### &#xff08;1&#xff09;版本升级 当服务器在运行时&#xff0c;需要升级的情况下&#xff0c;平滑升级即就是不断开服务器就可以进行升级&#xff0c;最大限度保证数据的完整性。 下载nginx新版本软件&#xff0c;正常执行./c…

【Pandas驯化-03】Pandas中常用统计函数mean、count、std、info使用

【Pandas驯化-03】Pandas中常用统计函数mean、count、std、info使用 本次修炼方法请往下查看 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合&#xff0c;智慧小天地&#xff01; &#x1f387; 相关内容文档获取 微…

机器学习周报第46周

目录 摘要Abstract一、文献阅读1.1 摘要1.2 研究背景1.3 论文方法1.4 模块分析1.5 网络规格1.6 高效的端到端对象检测1.7 mobile former模块代码 目录 摘要Abstract一、文献阅读1.1 摘要1.2 研究背景1.3 论文方法1.4 模块分析1.5 网络规格1.6 高效的端到端对象检测1.7 mobile f…

可以用来制作硬模空心耳机壳的胶粘剂有哪些种类?

可以用来制作硬模空心耳机壳的胶粘剂有哪些种类&#xff1f; 制作耳机壳的胶粘剂有很多种类&#xff0c;常见的有环氧树脂胶水、UV树脂胶、快干胶、热熔胶等。 这些胶粘剂都有不同的特点和适用场景&#xff0c;可以根据自己的需求选择合适的类型。 例如&#xff1a; 环氧树脂…

九、BGP路由属性和选路

目录 一、属性分类 1.1、公认属性 1.2、可选属性 二、选路原则 0、丢弃不可达 取值越大越优 1、Preferred-Value 2、Local_Preference 取值越小越优 3、路由优先级 4、AS_Path 5、Origin 6、MED 7、路由来源 8、Next_Hop的IGP度量值 BGP路由等价负载分担&#…