如何用AI大模型打造个性化内容页面展示,提升用户阅读体验和内容传播效果

news2024/11/8 21:45:59

摘要

本文介绍了如何使用人工智能大模型进行个性化内容页面展示的方法和步骤,包括数据收集、数据处理、特征提取、模型训练、模型预测、数据分析等,以及它们对用户的阅读体验和内容的传播效果的影响和价值。
图片

在数字化时代,内容是王者,内容的质量和传播效果直接影响着平台的流量和收入。但是,随着互联网用户的数量和多样性的增加,以及内容的数量和复杂性的增加,数字化营销业务面临着越来越大的挑战,如何提高内容的质量和价值,如何提高内容的吸引力和影响力,如何提高内容的传播力和留存力,如何提高内容的转化力和收益力,等等。这些问题的核心,其实都是如何提高用户的阅读体验和内容的传播效果。

那么,如何提高用户的阅读体验和内容的传播效果呢?除了内容本身,还有一个非常重要的因素,那就是内容的呈现方式,也就是内容的页面展示。内容的页面展示是否能够吸引用户的注意力,是否能够满足用户的个性化需求,是否能够引导用户相关内容,都是影响用户的阅读体验和内容的传播效果的重要因素。那么,如何设计一个能够适应不同用户的个性化内容页面展示呢?

你可能会问,什么是个性化内容页面展示?它有什么影响因素和优势?如何使用人工智能大模型进行个性化内容页面展示?请继续阅读,你将找到答案。本文将介绍什么是人工智能大模型,它的原理和应用,以及如何使用人工智能大模型进行个性化内容页面展示的方法和步骤。如果你想了解更多关于如何在数字化营销业务上应用人工智能大模型来优化业务的知识,请关注作者个人号“产品经理独孤虾”(全网同号)中的专栏《智能营销—大模型如何为运营与产品经理赋能》。

图片

数据收集

要实现个性化内容页面展示,首先需要有足够的数据来支持。数据是人工智能大模型的基础,也是个性化内容页面展示的源泉。数据的质量和数量决定了个性化内容页面展示的精度和效果。因此,数据收集是一个非常重要的步骤,需要通过各种渠道和方式,收集用户的行为数据和属性数据,以及内容的特征和价值数据。

用户的行为数据是指用户在平台上的各种操作和反馈,如点击、浏览、停留、滑动、跳转、收藏、点赞、评论、分享等。这些数据可以反映用户对内容的兴趣和偏好,以及用户的阅读习惯和阅读效果。用户的属性数据是指用户的基本信息和特征,如年龄、性别、地域、兴趣、职业、教育、收入等。这些数据可以反映用户的个性化特征和需求,以及用户的群体特征和行为规律。

内容的特征数据是指内容的基本信息和特征,如主题、风格、情感、质量、长度、格式、类型、标签等。这些数据可以反映内容的本质和价值,以及内容的差异和相似度。内容的价值数据是指内容的业务指标和效果,如浏览量、点击率、转化率、收益率、留存率、传播率等。这些数据可以反映内容的吸引力和影响力,以及内容的贡献和收益。

数据收集的渠道和方式有很多,例如,可以通过平台自身的日志系统、埋点系统、监测系统等,实时地记录和收集用户的行为数据和内容的价值数据;可以通过第三方的数据服务商、数据平台、数据交换等,获取和补充用户的属性数据和内容的特征数据;可以通过用户的主动反馈、问卷调查、访谈访问等,获取和验证用户的行为数据和属性数据;可以通过内容的主动标注、内容分析、内容挖掘等,获取和验证内容的特征数据和价值数据。

数据收集的目的是为了构建用户的个性化画像和内容的个性化画像,从而为用户提供最适合他们的内容页面展示。数据收集的原则是要尽量多、尽量全、尽量准、尽量新,从而提高数据的覆盖率、完整度、准确度和时效性。数据收集的难点是要解决数据的安全性、合法性、隐私性、伦理性等问题,从而保护用户和内容的权益和尊严。

延伸阅读:数据收集阶段:如何收集用户和内容的数据,以实现个性化内容页面展示

数据处理

数据收集之后,还需要对数据进行处理,以提高数据的质量和可用性。数据处理是指使用人工智能大模型对用户数据和内容数据进行快速和高效的处理,包括数据清洗、数据融合、数据压缩、数据增强等,从而为个性化内容页面展示提供更优质和更适用的数据。

数据清洗是指去除数据中的噪声、异常、重复、缺失等不合理和无效的数据,从而提高数据的准确度和一致性。数据清洗的方法有很多,例如,可以使用人工智能大模型的自编码器、去噪自编码器、异常检测等技术,来自动地识别和修复数据中的错误和缺陷。

数据融合是指将来自不同渠道和方式的数据进行整合和统一,从而提高数据的完整度和丰富度。数据融合的方法有很多,例如,可以使用人工智能大模型的多模态融合、知识图谱、实体链接等技术,来自动地识别和关联数据中的不同模态和不同实体。

数据压缩是指将数据进行降维和简化,从而提高数据的效率和可解释性。数据压缩的方法有很多,例如,可以使用人工智能大模型的主成分分析、自编码器、变分自编码器等技术,来自动地提取和保留数据中的主要特征和信息。

数据增强是指将数据进行扩充和变换,从而提高数据的数量和多样性。数据增强的方法有很多,例如,可以使用人工智能大模型的数据生成、数据增广、数据对抗等技术,来自动地生成和变换数据中的新的样本和场景。

数据处理的目的是为了构建用户的个性化画像和内容的个性化画像,从而为用户提供最适合他们的内容页面展示。数据处理的原则是要尽量快、尽量好、尽量多、尽量少,从而提高数据的效率和效果。数据处理的难点是要解决数据的复杂性、多样性、动态性、不确定性等问题,从而保证数据的质量和可用性。

特征提取

数据处理之后,还需要对数据进行特征提取,以构建用户的个性化画像和内容的个性化画像。特征提取是指使用人工智能大模型对用户数据和内容数据进行深度学习和分析,从而提取出用户和内容的关键特征和标签,从而为用户提供最适合他们的内容页面展示。

用户的个性化画像是指对用户进行细分和标签化的过程,它可以分为静态画像和动态画像。静态画像是指用户的固定和稳定的特征和标签,如年龄、性别、地域、兴趣、职业、教育、收入等。动态画像是指用户的变化和不稳定的特征和标签,如行为、偏好、情绪、需求、场景等。用户的个性化画像的维度和深度决定了个性化内容页面展示的精度和效果。

内容的个性化画像是指对内容进行细分和标签化的过程,它也可以分为静态画像和动态画像。静态画像是指内容的固定和稳定的特征和标签,如主题、风格、情感、质量、长度、格式、类型、标签等。动态画像是指内容的变化和不稳定的特征和标签,如热度、流行度、相关度、价值度、影响度等。内容的个性化画像的维度和深度决定了个性化内容页面展示的精度和效果。

特征提取的方法有很多,例如,可以使用人工智能大模型的自然语言处理、视觉处理、多模态处理、推荐系统等技术,来自动地提取和标注用户和内容的特征和标签。特征提取的目的是为了构建用户的个性化画像和内容的个性化画像,从而为用户提供最适合他们的内容页面展示。特征提取的原则是要尽量全、尽量准、尽量新、尽量多,从而提高特征的覆盖率、准确率、时效率和多样性。特征提取的难点是要解决特征的抽象性、隐含性、动态性、多样性等问题,从而保证特征的质量和可用性。

模型训练

特征提取之后,还需要对用户画像和内容画像进行模型训练,以学习用户和内容之间的相似度和相关度,以及用户对不同内容页面展示的喜好和反馈。模型训练是指使用人工智能大模型对用户画像和内容画像进行深度学习和优化,从而为用户生成最适合他们的内容页面布局方案,从而实现个性化内容页面展示。

用户和内容之间的相似度和相关度是指用户和内容的匹配程度和关联程度,它们决定了用户对内容的兴趣和需求,以及内容对用户的吸引力和影响力。一般来说,用户和内容之间的相似度和相关度越高,说明用户对内容越感兴趣,内容对用户越有价值。因此,模型训练的目的是为了找到用户和内容之间的最佳匹配和最佳关联,从而为用户提供最适合他们的内容页面展示。

用户对不同内容页面展示的喜好和反馈是指用户对内容页面展示的方式和效果的评价和意见,它们决定了用户的阅读体验和内容的传播效果。一般来说,用户对内容页面展示的喜好和反馈越好,说明用户的阅读体验和内容的传播效果越好。因此,模型训练的目的是为了找到用户对内容页面展示的最佳喜好和最佳反馈,从而为用户提供最适合他们的内容页面展示。

模型训练的方法有很多,例如,可以使用人工智能大模型的协同过滤、矩阵分解、深度神经网络、强化学习等技术,来自动地学习和优化用户和内容之间的相似度和相关度,以及用户对不同内容页面展示的喜好和反馈。模型训练的原则是要尽量准、尽量快、尽量好、尽量多,从而提高模型的准确率、效率、效果和泛化性。模型训练的难点是要解决模型的复杂性、稳定性、可解释性、可扩展性等问题,从而保证模型的质量和可用性。

模型预测

模型训练之后,还需要对用户的行为和需求进行模型预测,实时地为用户展示最适合他们的内容页面布局方案,实现千人千面的个性化内容页面展示。模型预测是指使用人工智能大模型对用户的行为和需求进行深度理解和推理,从而为用户生成最适合他们的内容页面布局方案,包括页面配色、页面模块、页面布局、行间距、字间距、字体、字号、导航栏目等各个细节,从而实现千人千面的个性化内容页面展示。

用户的行为和需求是指用户在平台上的实时操作和反馈,以及用户的当前兴趣和期待,它们决定了用户对内容的阅读意愿和阅读效果。一般来说,用户的行为和需求越明确,说明用户对内容越有需求,内容对用户越有价值。因此,模型预测的目的是为了找到用户的行为和需求的最佳匹配和最佳满足,从而为用户提供最适合他们的内容页面展示。

模型预测的方法有很多,例如,可以使用人工智能大模型的序列预测、注意力机制、上下文感知、多任务学习等技术,来自动地理解和推理用户的行为和需求,以及生成和展示最适合他们的内容页面布局方案。模型预测的原则是要尽量实时、尽量准、尽量好、尽量多,从而提高模型的实时性、准确性、效果性和泛化性。模型预测的难点是要解决模型的实时性、可解释性、可交互性、可适应性等问题,从而保证模型的质量和可用性。

个性化内容页面生成

在使用人工智能大模型进行个性化内容页面展示的过程中,一个非常重要的环节就是个性化内容页面生成。个性化内容页面生成是指使用人工智能大模型根据用户的个性化画像和内容的个性化画像,以及用户的行为和需求,生成不同的内容页面布局方案,并展示给用户。这样可以让用户看到最适合他们的内容页面,从而提高用户的阅读体验和内容的传播效果。

为了让你更清楚地了解个性化内容页面生成的过程和效果,我将举一些具体的例子,展示不同用户看到的不同内容页面的效果,如页面配色、页面模块、页面布局等。我将使用graphic_art工具,来生成一些示意图,展示不同用户看到的不同内容页面的效果。请注意,这些示意图只是为了说明个性化内容页面生成的原理和效果,并不代表真实的内容页面,也不涉及任何真实的用户和内容的信息。

假设我们有以下两个用户,他们都对一篇关于人工智能大模型的文章感兴趣,但是他们的个性化画像和行为需求是不同的:

用户A:男性,25岁,北京,产品经理,对人工智能大模型的原理和应用非常感兴趣,喜欢看文字和图表,喜欢明亮的颜色,喜欢上下滑动的页面布局,喜欢大的行间距和字间距,喜欢微软雅黑的字体,喜欢中等的字号,喜欢多个导航栏目,喜欢看相关内容。

用户B:女性,35岁,上海,运营经理,对人工智能大模型的业务价值和优势非常感兴趣,喜欢看图片和视频,喜欢暗淡的颜色,喜欢左右滑动的页面布局,喜欢小的行间距和字间距,喜欢楷体的字体,喜欢小的字号,喜欢少个导航栏目,喜欢看评论。

那么,使用人工智能大模型进行个性化内容页面生成的过程和效果如下:

  • 首先,人工智能大模型会根据用户A和用户B的个性化画像和内容的个性化画像,以及用户A和用户B的行为和需求,生成不同的内容页面布局方案,包括页面配色、页面模块、页面布局、行间距、字间距、字体、字号、导航栏目等各个细节。
  • 然后,人工智能大模型会将生成的内容页面布局方案实时展示给用户A和用户B,让他们看到最适合他们的内容页面。
  • 最后,人工智能大模型会根据用户A和用户B的反馈和效果,不断优化和调整内容页面展示的方案,从而提高用户A和用户B的阅读体验和内容的传播效果。

这样,用户A和用户B看到的内容页面是完全不同的,它们分别符合用户A和用户B的个性化特征和偏好,从而提高了用户A和用户B的阅读体验和内容的传播效果。

数据分析

个性化内容页面展示之后,还需要对用户的反馈和效果进行数据分析,以不断优化和调整内容页面展示的方案,从而提高个性化内容页面展示的效果。数据分析是指使用各种数据分析手段,如页面停留时间分析、页面滑动分析、用户点击相关链接分析、眼动测试等,来收集和评估用户的反馈和效果,从而发现问题和改进方案,从而提高个性化内容页面展示的效率和效果。

l 页面停留时间分析是指分析用户在某一内容页面上的停留时长,它可以反映用户对该内容的兴趣程度和阅读深度,一般来说,页面停留时间越长,说明用户对该内容越感兴趣,越愿意阅读下去。因此,通过页面停留时间分析,可以了解用户对不同内容页面展示的喜好和反馈,从而为用户提供更符合其兴趣的内容页面展示。例如,有些用户可能对某一内容非常感兴趣,但是因为内容页面展示的方式不够吸引他们,而导致他们的页面停留时间很短,这时,可以通过优化内容页面展示的方式,如改变页面配色、页面模块、页面布局等,来提高用户的页面停留时间,增加用户的阅读深度。

l 页面滑动分析是指分析用户在某一内容页面上的滑动行为,它可以反映用户对该内容的阅读习惯和阅读速度,一般来说,页面滑动越快,说明用户对该内容越不感兴趣,越想快速浏览或跳过。因此,通过页面滑动分析,可以了解用户对不同内容页面展示的适应度和效率,从而为用户提供更符合其习惯的内容页面展示。例如,有些用户可能对某一内容不太感兴趣,但是因为内容页面展示的方式太复杂,而导致他们的页面滑动很慢,这时,可以通过优化内容页面展示的方式,如简化页面模块、页面布局、行间距、字间距等,来提高用户的页面滑动速度,减少用户的阅读负担。

l 用户点击相关链接分析是指分析用户在某一内容页面上点击的相关内容的链接,它可以反映用户对该内容的阅读范围和阅读需求,一般来说,用户点击相关链接越多,说明用户对该内容越感兴趣,越想了解更多相关内容。因此,通过用户点击相关链接分析,可以了解用户对不同内容页面展示的影响力和传播力,从而为用户提供更符合其需求的内容页面展示。例如,有些用户可能对某一内容很感兴趣,但是因为内容页面展示的方式不够引导他们,而导致他们的用户点击相关链接很少,这时,可以通过优化内容页面展示的方式,如增加页面模块、导航栏目、相关内容推荐等,来提高用户的用户点击相关链接的数量,增加用户的阅读范围。

l 眼动测试是指通过专业的设备或软件,记录和分析用户在某一内容页面上的眼动轨迹,它可以反映用户对该内容的注意力和阅读重点,一般来说,用户的眼睛越集中在某一部分,说明用户对该部分越感兴趣,越重视。因此,通过眼动测试,可以了解用户对不同内容页面展示的感受和评价,从而为用户提供更符合其重点的内容页面展示。例如,有些用户可能对某一内容的某一部分非常感兴趣,但是因为内容页面展示的方式不够突出这一部分,而导致他们的眼睛分散在其他部分,这时,可以通过优化内容页面展示的方式,如改变页面配色、页面模块、页面布局等,来提高用户的眼睛集中度,增加用户的阅读重点。

数据分析的目的是为了发现问题和改进方案,从而提高个性化内容页面展示的效率和效果。数据分析的原则是要尽量全面、尽量客观、尽量及时、尽量有效,从而提高数据的可信度和可用度。数据分析的难点是要解决数据的多维性、多源性、多态性、多变性等问题,从而保证数据的质量和可用性。

结语

本文介绍了如何使用人工智能大模型进行个性化内容页面展示的方法和步骤,包括数据收集、数据处理、特征提取、模型训练、模型预测、数据分析、个性化内容页面生成等,以及它们对用户的阅读体验和内容的传播效果的影响和价值。这是一种能够为数字化营销业务带来巨大价值和优势的技术。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1813503.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RT-DETR详解之 Decoder 层

在上一篇博客中,博主已经讲解了如何利用Uncertainty-minimal Query Selection选择出好的特征,接下来便要将这些特征输入到Decoder中进行解码,需要注意的是,在RT-DETR的Encoder中,使用的是标准的自注意力计算方法&#…

【多重背包 动态规划】2585. 获得分数的方法数

本文涉及知识点 动态规划汇总 背包问题汇总 C算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 LeetCode2585. 获得分数的方法数 考试中有 n 种类型的题目。给你一个整数 target 和一个下标从 0 开始的二维整数数组 types ,其中 …

TCP三次握手和四次挥手过程简介

接上篇 传输层部分 链路层、网络层、传输层和应用层协议详解分析-CSDN博客文章浏览阅读689次,点赞10次,收藏15次。wireshark抓包分析-CSDN博客wireshark是网络包分析工具网络包分析工具的主要作用是尝试捕获网络包,并尝试显示包的尽可能详细…

bugku---misc---贝斯手

1、下载附件,解压之后得到下面文件 2、zip需要密码,但是介绍里面给出了提示 3、再结合图片,是古力娜扎,搜索了以下她的生日是1992。应该就是密码 4、破解flag.zip得到一段文本 5、结合题目描述说的贝斯手,猜测应该是b…

win11 默认程序中找不到typora 和设置typora为md的默认打开程序

1.找到任意一个.md文件 2.在任意一个.md文件的上面右键,点击--》打开方式--》选择其他应用--》在电脑上选择应用--》(如果列表中没有,拉到最下面)在电脑上选择应用--》弹出文件浏览框 3.找到安装typora的时候的exe文件&#xff0c…

Flutter打包网络问题解决办法

问题情况":app:compileReleaseJavaWithJavac" 报错的最主要问题其实在下一句 Failed to find Build Tools revision 30.0.3,请查看自己的Android sdk版本,比如我的就是’34.0.0’版本. 解决办法: 在app/build.gradle中的android下添加,即可 buildToolsVersion 3…

【C++课程学习】:类和对象(拷贝构造和运算符重载)

🎁个人主页:我们的五年 🔍系列专栏:C课程学习 🎉欢迎大家点赞👍评论📝收藏⭐文章 目录 ✍拷贝构造: 🍉特点一: 🍉特点二: &…

实体类status属性使用枚举类型的步骤

1. 问题引出 当实体类的状态属性为Integer类型时,容易写错 2. 初步修改 把状态属性强制为某个类型,并且自定义一些可供选择的常量。 public class LessonStatus {public static final LessonStatus NOT_LEARNED new LessonStatus(0,"未学习"…

高边坡监测规范:确保边坡安全的科学准则

随着土木工程建设的不断发展,高边坡作为常见的土方边坡形式,其安全问题日益受到人们的关注。高边坡监测规范作为保障边坡安全的重要手段,对于预防边坡滑坡、坍塌等地质灾害具有重要意义。本文将对高边坡监测规范进行深入探讨,以期…

微信小程序组件传值

虽然微信小程序是比较轻量的,但是还是拥有组件的 这是文件的基本目录 我们的代码基本都在pages和components文件夹中 在component中创建组件 在component中 ,创建一个目录 我创建了一个 head目录 用于配置头部信息 我在这里创建了 一个头部组件&…

程序员,真有不变的技术和稳定的工作吗?

在程序员这个充满变化和创新的领域,很多人追求“稳定”的工作,认为找到一个合适的公司和岗位就能安心一辈子。然而,技术的快速更新迭代和市场需求的不断变化,使得真正的稳定变得越来越难以捉摸。作为程序员,我们需要反…

Java虚拟机 - JVM(类加载器、类加载的过程、双亲委派模型、GC垃圾回收)

一、JVM中数据内存区域划分 本地方法栈:里面保存的是native 关键字的方法,不是用Java写的,而是jvm内部用c实现的。 **程序计数器 和 虚拟机栈 每个线程都存在一份。 如果一个 JVM 进程 中有 10个 线程,那么就会存在 10份 程序计数…

通过文本指令生成3D模型纹理贴图

在3D建模的广阔领域中,我们总是追求更高效、更直观的方法来创建和编辑模型。今天,我要向大家介绍一种革新性的技术,它能够通过文本指令来精确地控制3D模型的细节,包括纹理贴图的生成。 1. 技术定位 这项技术主要定位于交互式3D建模领域,它为用户提供了一种全新的方式来创…

哈喽GPT-4o——对GPT-4o Prompt的思考与看法

目录 一、提示词二、提示词的优势1、提升理解能力2、增强专注力3、提高效率 三、什么样的算无效提示词?1、过于宽泛2、含糊不清3、太过复杂4、没有具体上下文5、缺乏明确目标6、过于开放7、使用专业术语但未定义8、缺乏相关性: 四、提示词正确的编写步骤…

Android 应用加固与重签名—使用AndroidStudio自带工具 apksigner

由 AndroidStudio 生成的release版本的app有自己的签名,但当应用加固后会删除原签名,需要重新签名。 一、加固方式: 使用基础版的腾讯云(乐固)进行免费加固,上传软件后等待在线加固完成后下载 apk 即可。…

设置SSHkeys多服务器免登录配置(ssh config)

一、背景: 多邮箱或者多git账号进行同一台电脑开发的情况。 有时候,开发时可能会面临一个情况,就是通过自己的电脑,可能同时需要开发多个不同地方的项目,或者说,自己建立的项目已经配置好SSH验证免密登录&a…

Qt C++ TCP服务端响应多客户端通讯

本示例使用的设备&#xff1a;WIFI无线4G网络RFID云读卡器远程网络开关物流网阅读器TTS语音-淘宝网 (taobao.com) #include "mainwindow.h" #include "ui_mainwindow.h" #include "QMessageBox" #include <QDebug> #include <exceptio…

【春秋云镜】Faculty Evaluation System未授权任意文件上传漏洞(CVE-2023-33440)

因为该靶场没有Write up,索性自己搞一下&#xff0c;方便别人&#xff0c;快乐自己&#xff01; 漏洞概述&#xff1a; Sourcecodester Faculty Evaluation System v1.0 is vulnerable to arbitrary code execution via /eval/ajax.php?actionsave_user. 漏洞复现&#xff…

Halcon 多相机统一坐标系

小杨说事-基于Halcon的多相机坐标系统一原理个人理解_多相机标定统一坐标系-CSDN博客 一、概述 最近在搞多相机标定等的相关问题&#xff0c;对于很大的场景&#xff0c;单个相机的视野是不够的&#xff0c;就必须要统一到一个坐标系下&#xff0c;因此我也用了4个相机&#…

SpringBoot Vue Bootstrap 旅游管理系统

SpringBoot Vue 旅游管理系统源码&#xff0c;附带环境安装&#xff0c;运行说明 源码地址 开发环境 jdk1.8,mysql8,nodejs16,navicat,idea 使用技术springboot mybatis vue bootstrap 部分功能截图预览