机器学习笔记——支持向量机

news2024/12/25 12:08:16

支持向量机

  • 参数模型
  • 对分布需要假设(这也是与非参数模型的区别之一)
  • 间隔最大化,形式转化为凸二次规划问题

最大化间隔

间隔最大化是意思:对训练集有着充分大的确信度来分类训练数据,最难以分的点也有足够大的信度将其分开
间隔最大化的分离超平面的的求解怎么求呢?
最终的方法如下
1.线性可分的支持向量机的优化目标
其实就是找得到分离的的超平面
在这里插入图片描述
求得参数w和b的值就可以了
注意,最大间隔分离超平面是唯一的间隔叫硬间隔
1.1支持向量
对于一个样本,要么对应的参数a为0,要么与超平面的间隔为γ,将这些与超平面距离最小的向量x称为支持向量
也就是训练点到分离超平面距离最近的样本点就是支持向量

2. 线性支持向量机的目标函数
线性可分的问题对不可分不适用,因此需要将硬间隔改为软间隔在这里插入图片描述 这里的a是待求解的参数,梯度参数量是和规模m相关,数据的规模增大时,参数量也增多。 在这里插入图片描述
线性支持向量机包括了线性可分支持向量机

序列最小优化算法(SMO)

我们只需要用支持向量来进行分类,这样子减少了复杂度和时间消耗,但是优势不明显,因为参数a的求解需要的时间也很大,所以用到了序列最小优化算法来解决这个问题。
思想:同时优化所有的参数比较困难,因此选择部分参数来优化,选择两个固定其他的,然后再选两个固定其他的一直循环,直到更新参数的变化小于某个值就可以终止,或者固定迭代次数。

线性可分的代码实例

采用的linear.csv数据

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from tqdm import tqdm, trange

data = np.loadtxt('./data/linear.csv', delimiter=',')
print('数据集大小:', len(data))
x = data[:, :2]
y = data[:, 2]

# 数据集可视化
plt.figure()
plt.scatter(x[y == -1, 0], x[y == -1, 1], color='red', label='y=-1')
plt.scatter(x[y == 1, 0], x[y == 1, 1], color='blue', marker='x', label='y=1')
plt.xlabel(r'$x_1$')
plt.ylabel(r'$x_2$')
plt.legend()
plt.show()
#%%
def SMO(x, y, ker, C, max_iter):
    '''
    SMO算法
    x,y:样本的值和类别
    ker:核函数,与线性回归中核函数的含义相同
    C:惩罚系数
    max_iter:最大迭代次数
    '''
    # 初始化参数
    m = x.shape[0]
    alpha = np.zeros(m)

    # 预先计算所有向量的两两内积,减少重复计算
    K = np.zeros((m, m))
    for i in range(m):
        for j in range(m):
            K[i, j] = ker(x[i], x[j])

    for l in trange(max_iter):
        # 开始迭代
        for i in range(m):
            # 有m个参数,每一轮迭代中依次更新
            # 固定参数alpha_i与另一个随机参数alpha_j,并且保证i与j不相等
            j = np.random.choice([l for l in range(m) if l != i])

            # 用-b/2a更新alpha_i的值
            eta = K[j, j] + K[i, i] - 2 * K[i, j] # 分母
            e_i = np.sum(y * alpha * K[:, i]) - y[i] # 分子
            e_j = np.sum(y * alpha * K[:, j]) - y[j]
            alpha_i = alpha[i] + y[i] * (e_j - e_i) / (eta + 1e-5) # 防止除以0
            zeta = alpha[i] * y[i] + alpha[j] * y[j]

            # 将alpha_i和对应的alpha_j保持在[0,C]区间
            # 0 <= (zeta - y_j * alpha_j) / y_i <= C
            if y[i] == y[j]:
                lower = max(0, zeta / y[i] - C)
                upper = min(C, zeta / y[i])
            else:
                lower = max(0, zeta / y[i])
                upper = min(C, zeta / y[i] + C)
            alpha_i = np.clip(alpha_i, lower, upper)
            alpha_j = (zeta - y[i] * alpha_i) / y[j]

            # 更新参数
            alpha[i], alpha[j] = alpha_i, alpha_j

    return alpha
#%%
# 设置超参数
C = 1e8 # 由于数据集完全线性可分,我们不引入松弛变量
max_iter = 1000
np.random.seed(0)

alpha = SMO(x, y, ker=np.inner, C=C, max_iter=max_iter)
#%%
# 用alpha计算w,b和支持向量
sup_idx = alpha > 1e-5 # 支持向量的系数不为零
print('支持向量个数:', np.sum(sup_idx))
w = np.sum((alpha[sup_idx] * y[sup_idx]).reshape(-1, 1) * x[sup_idx], axis=0)
wx = x @ w.reshape(-1, 1)
b = -0.5 * (np.max(wx[y == -1]) + np.min(wx[y == 1]))
print('参数:', w, b)
#%%
# 绘图
X = np.linspace(np.min(x[:, 0]), np.max(x[:, 0]), 100)
Y = -(w[0] * X + b) / (w[1] + 1e-5)
plt.figure()
plt.scatter(x[y == -1, 0], x[y == -1, 1], color='red', label='y=-1')
plt.scatter(x[y == 1, 0], x[y == 1, 1], marker='x', color='blue', label='y=1')
plt.plot(X, Y, color='black')
# 用圆圈标记出支持向量
plt.scatter(x[sup_idx, 0], x[sup_idx, 1], marker='o', color='none',
    edgecolor='purple', s=150, label='support vectors')
plt.xlabel(r'$x_1$')
plt.ylabel(r'$x_2$')
plt.legend()
plt.show()

线性不可分的

# 从sklearn.svm中导入SVM分类器
from sklearn.svm import SVC

data1=np.loadtxt('./data/spiral.csv',delimiter=',')
x=data[:,:2]
y=data[:,2]
# 定义SVM模型,包括定义使用的核函数与参数信息
model = SVC(kernel='rbf', gamma=50, tol=1e-6)
model.fit(x, y)

# 绘制结果
fig = plt.figure(figsize=(6,6))
G = np.linspace(-1.5, 1.5, 100)
G = np.meshgrid(G, G)
X = np.array([G[0].flatten(), G[1].flatten()]).T # 转换为每行一个向量的形式
Y = model.predict(X)
Y = Y.reshape(G[0].shape)
plt.contourf(G[0], G[1], Y, cmap=cmap, alpha=0.5)
# 绘制原数据集的点
plt.scatter(x[y == -1, 0], x[y == -1, 1], color='red', label='y=-1')
plt.scatter(x[y == 1, 0], x[y == 1, 1], marker='x', color='blue', label='y=1')
plt.xlabel(r'$x_1$')
plt.ylabel(r'$x_2$')
plt.legend()
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1809098.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

-31-()

在终端运行时消除输入空格对程序的影响可以使用{在scanf后加“getchar()”或者在scanf&#xff08;“空格%d”,&a&#xff09;} 按位与和移位操作符只能用于整数且都要转位二进制后进行相应操作 不创建临时变量&#xff0c;实现两个数的交换&#xff1a;1——使用加减法&…

插卡式仪器模块:数据记录模块(插卡式)

• 32 位分辨率 • 250 KSPS 采样率 • 可以同时并且连续地记录两个通道的电压输入 • 实时上传原始数据至 PC 端 通道22输入阻抗电压22 kΩ10 MΩ电流0.2 Ω输入范围电压 250 mV 4.5 V电流1.5 A耦合DCDC带宽450 Hz385 HzADC 分辨率32 Bits24 Bits采样率10 kSPS250 kSPS测量…

【最新鸿蒙应用开发】——类Web开发范式1——生命周期

兼容JS的类Web开发范式 类Web命令式开发的生命周期 1. 应用生命周期 1.1. app.js 每个应用可以在app.js自定义应用级生命周期的实现逻辑&#xff0c;包括&#xff1a; onCreate&#xff1a;在应用生成时被调用的生命周期函数。 onDestroy&#xff1a;在应用销毁时被调用的生…

高德地图简单实现点标,和区域绘制

高德地图开发文档:https://lbs.amap.com/api/javascript-api/guide/abc/quickstart 百度搜索高德地图开发平台 注册高德地图开发账号 在应用管理中 我的应用中 添加一个Key 点击提交 进入高德地图开发文档:https://lbs.amap.com/api/javascript-api/guide/abc/quickstart …

详解FedProx:FedAvg的改进版 Federated optimization in heterogeneous networks

FedProx&#xff1a;2020 FedAvg的改进 论文&#xff1a;《Federated Optimization in Heterogeneous Networks》 引用量&#xff1a;4445 源码地址&#xff1a; 官方实现&#xff08;tensorflow&#xff09;https://github.com/litian96/FedProx 几个pytorch实现&#xff1a;…

【激光雷达】

激光雷达 机械式360扫描雷达半固态激光雷达二维扫描一维扫描 固态激光雷达OPA固态激光雷达&#xff08; 光学相控阵技术&#xff09;Flash激光雷达 FMCW 激光雷达 激光雷达技术在近几年可以说是蓬勃发展&#xff0c;新能源汽车的大量使用&#xff0c;给雷达技术的发展提供了肥沃…

C++系统编程篇——linux编译器 gcc/g++(链接动静态库)

linux编译器-gcc/g &#xff08;1&#xff09;g安装&#xff08;gcc一般自带&#xff0c;g需要下载&#xff09; sudo yum install -y gcc-c g --version gcc用于编译C语言代码&#xff0c;g用于编译C代码 &#xff08;2&#xff09;程序翻译过程 选项“-o”是指目标文件…

Python的else子句7个妙用,原来还能这样用,整挺好!

## 1、条件语句else基础 &#x1f504; 1.1 简单else的常规操作 在Python中&#xff0c;else子句通常跟在if或一系列if-elif之后&#xff0c;提供一个“否则”的情况处理路径。如果前面的所有条件都不满足 &#xff0c;程序就会执行这里的代码块。例如 &#xff0c;检查一个数…

目标检测(R-CNN)系列(Pytorch 26)

一 R-CNN 除了之前描述的单发多框检测之外&#xff0c;区域卷积神经网络&#xff08;region‐based CNN或regions with CNN features&#xff0c; R‐CNN&#xff09;(Girshick et al., 2014)也是将深度模型应用于目标检测的开创性工作之一。下面介绍R‐CNN及其一 系列改进方法…

【JavaEE】Spring Boot MyBatis详解(一)

一.MyBatis的基本概念与相关配置. 1.基本概念 MyBatis是一款优秀的持久层框架&#xff0c;用于简化JDBC的开发。MyBatis本是Apache的一个开源项目iBatis&#xff0c;2010年这个项目由apache迁移到了google code&#xff0c;并且改名为MyBatis. 2013年11月迁移到Github.持久层…

吴恩达2022机器学习专项课程C2W3:2.25 理解方差和偏差(诊断方差偏差正则化偏差方案)

目录 引言名词替代影响模型偏差和方差的因素1.多项式阶数2.正则化参数 判断是否有高偏差或高方差1.方法一&#xff1a;建立性能基准水平2.方法二&#xff1a;建立学习曲线 总结 引言 机器学习系统开发的典型流程是从一个想法开始&#xff0c;然后训练模型。初次训练的结果通常…

SpringSecurity入门(四)

18、权限管理/授权 18.1、针对url配置 配置SecurityConfig package com.wanqi.config;import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.security.config.annotation.web.bu…

基于STM32的595级联的Proteus仿真

文章目录 一、595级联1.题目要求2.思路3.仿真图3.1 未仿真时3.2 模式A3.2 模式B3.3 故障模式 二、总结 一、595级联 1.题目要求 STM32单片机&#xff0c;以及三个LED灯对应红黄绿灯&#xff0c;IIC的OLED显示屏&#xff0c;温湿度传感器DHT11&#xff0c;两个独立按键和两个5…

复数乘法IP核的使用

一、IP核解析 在这张图片中&#xff0c;我们看到的是一个“Complex Multiplier (6.0)” IP 核的配置界面。以下是各个配置参数的详细说明&#xff1a; 1.1 Multiplier Construction Use LUTs: 选择这个选项时&#xff0c;乘法器将使用查找表&#xff08;LUTs&#xff09;来实现…

【数据分析系列】交叉列联表与卡方检验:数据解读与Python实践应用

目录 一、交叉列联表和卡方检验的关系 &#xff08;一&#xff09;什么是交叉列联表 &#xff08;二&#xff09;什么是卡方检验 &#xff08;三&#xff09;除了卡方检验&#xff0c;列联表分析还可以结合其他统计方法 二、列联表只能用于两个分类变量吗&#xff1f; 三、…

随机点名软件,教师必备NO.106

事先需要新建一个txt文本文档&#xff0c;里面输入名单&#xff0c;一行一个 点击文件-导入TXT-点击开始抽取 资源来源于网络&#xff0c;免费分享仅供学习和测试使用&#xff0c;请勿用于商业用途&#xff0c;如有侵权请联系删除&#xff01; 下载地址&#xff1a;点击查看…

CISCN2023 初赛部分复现

Misc 1. 被加密的生产流量 涉及到modbus协议 modbus && frame.len 66过滤之后&#xff0c;每条流量最后两个字节是base32的密文 脚本一键提取 #modbus_exp import pysharkflag tmp 0 cap pyshark.FileCapture(input_file"D:/下载/CTF附件/ciscn2023/modbu…

js调试过程中修改变量值

1.在想要变更的地方添加断点 2.添加监视表达式 3.执行网页代码&#xff0c;当执行到断点处则会停止 4.点击执行下一步&#xff0c;则会执行监视表达式

68. UE5 RPG 处理多个角色后续bug

我们现在已经有了四个敌人角色&#xff0c;接下来&#xff0c;处理一下在战斗中遇到的问题。 处理角色死亡后还会攻击的问题 因为我们有角色溶解的效果&#xff0c;角色在死亡以后的5秒钟才会被销毁掉。所以在这五秒钟之内&#xff0c;角色其实还是会攻击。主要时因为AI行为树…

MySQL基础---库的操作和表的操作(配着自己的实操图,简单易上手)

绪论​ 勿问成功的秘诀为何&#xff0c;且尽全力做您应该做的事吧。–美华纳&#xff1b;本章是MySQL的第二章&#xff0c;本章主要写道MySQL中库和表的增删查改以及对库和表的备份处理&#xff0c;本章是基于上一章所写若没安装mysql可以查看Linux下搭建mysql软件及登录和基本…