吴恩达2022机器学习专项课程C2W3:2.25 理解方差和偏差(诊断方差偏差正则化偏差方案)

news2024/11/8 16:49:48

目录

  • 引言
  • 名词替代
  • 影响模型偏差和方差的因素
    • 1.多项式阶数
    • 2.正则化参数
  • 判断是否有高偏差或高方差
    • 1.方法一:建立性能基准水平
    • 2.方法二:建立学习曲线
  • 总结

引言

机器学习系统开发的典型流程是从一个想法开始,然后训练模型。初次训练的结果通常不理想,因此关键在于如何决定下一步该做什么以提高模型性能。观察算法的偏差和方差(Bias and Variance)在很多应用场景中能很好地指导下一步的改进。

名词替代

J_train:训练误差
J_cv:交叉验证误差
J_test:测试误差

影响模型偏差和方差的因素

1.多项式阶数

(1)什么是高偏差和高方差

  • 如果用一条直线来拟合数据,效果不好,则认为此时模型有高偏差,高偏差的模型J_train和J_cv都很高,表现为欠拟合。
  • 如果用一个四阶多项式来拟合数据,则认为此时模型有高方差,高方差的模型J_train很低,但J_cv很高,表现为过拟合。
  • 如果用一个二次多项式来拟合数据,效果最好,此时模型既没有高偏差也没有高方差,合适的模型J_train和J_cv都较低。

在这里插入图片描述


(2) 模型复杂度对模型表现的影响

当多项式阶数(模型复杂度)增加时:

  • J_train会下降,因为模型变得更加复杂,更能拟合训练数据,此时模型高偏差。
  • J_cv在多项式次数(d)很低时很高,表示欠拟合,此时模型高偏差;在多项式次数(d)很高时也很高,表示过拟合,此时模型高方差。

只有在适中的多项式次数(如二次多项式)时,模型的J_train和J_cv都较低,表现最好。 因此要选择一个合适的多项式次数,使模型在训练数据和未见过的数据上都有较好的表现,达到偏差和方差的平衡。

在这里插入图片描述


(3)结论

  • 高偏差(欠拟合):主要指标是J_train高,表示模型在训练集上表现不好。通常J_train和J_cv接近。

  • 高方差(过拟合):主要指标是J_cv远高于J_train,即J_cv >> J_train。训练误差低但交叉验证误差高,表明模型在训练数据上表现好但在新数据上表现差。

  • 同时存在高偏差和高方差:这种情况较少见,但在某些复杂模型如神经网络中可能出现。表现为训练误差高,交叉验证误差更高。

  • 关键在于:高偏差表示模型在训练集上表现不好,高方差表示模型在交叉验证集上比在训练集上表现差得多。
    在这里插入图片描述


2.正则化参数

(1)过大的λ和过小的λ

λ过大导致模型高偏差(欠拟合),w参数几乎为0没有影响了,只有λ的常量值,此时模型绘制出来就是一条线,因此无法拟合训练样本,Jtrain较高。λ过小导致模型高方差(过拟合),Jcv远大于Jtrain。最终,合适的λ值能平衡偏差和方差,减少训练集和验证集的误差。
在这里插入图片描述


(2)通过交叉验证选择适合的λ

类似于之前选择多项式阶数的方法,先设定λ值(如λ=0),最小化成本函数得到参数,然后计算J_cv。不断尝试不同的λ值,逐步翻倍,并计算每次的J_cv。最终,通过比较不同λ值对应的J_cv差,选择J_cv最小的λ值及其对应的参数。最后,用J_test评估算法的泛化性能,并展示J_train和J_cv如何随λ变化。
在这里插入图片描述


(3)正则化参数λ对模型表现的影响

当正则化参数(λ)变大时:

  • λ=0时表示没有正则化,容易过拟合(高方差),J_train小而J_cv大。
  • λ值很大时会欠拟合(高偏差),导致J_train和J_cv都很大。随着λ增大,J_train增加。两端λ值过大或过小时J_cv都会增加。

适中的λ值可以使模型性能最佳,J_train和J_cv都较低。 最终得出结论:通过交叉验证尝试不同的λ值,选择J_cv最小的λ值,可以得到合适的模型。类似于选择多项式次数,两者图形在偏差和方差方面是镜像关系。

在这里插入图片描述


判断是否有高偏差或高方差

1.方法一:建立性能基准水平

(1)语音识别案例概述
训练一个语音识别系统,J_train(没有正确转录的部分占总体的比例)为10.8%,J_cv(测试系统性能)为14.8%。尽管10.8%看起来像是高偏差,但通过与人类表现(10.6%误差)对比,发现算法在训练集上的表现接近人类水平,仅差0.2%。真正的问题是J_cv比J_train高很多,有4%的差距,这表明算法存在高方差问题,而不是高偏差问题。通过这样的基准测试,可以更准确地判断算法性能的不足之处。
在这里插入图片描述


(2)建立性能基准水平的三种方法
在判断训练误差是否高时,建立性能的基准水平很有用。基线水平帮助你对学习算法的误差有合理的预期。

  • 常见的方法是衡量人类在该任务上的表现,因为人类通常擅长处理非结构化数据(如音频、图像或文本)。
  • 另一种方法是参考已有的竞争算法或之前的实现,通过测量这些算法的性能来建立基准。
  • 有时也可以根据之前的经验进行猜测。
    在这里插入图片描述
    (3)性能基准水平判断高偏差和高方差
    首先,通过建立性能基准水平(如人类表现)和测量训练误差及交叉验证误差来评估算法的性能。
  • (左侧)如果训练误差高于基线水平,则算法存在高偏差。
  • (中间)如果交叉验证误差远高于训练误差,则表明算法有高方差。

通过这些数值差距,可以直观地判断算法的问题。(右侧)有时算法可能同时存在高偏差和高方差,具体表现为训练误差高于基线水平,且训练误差与交叉验证误差之间的差距很大。理解这些指标有助于更好地分析和改进算法。
在这里插入图片描述


(4)小结
判断算法是否有高偏差的一种方法是看训练误差是否大,然而,在某些应用中,数据可能嘈杂,零误差不现实,因此建立性能基准很有用。你可以将训练误差与期望误差(如人类表现)对比,来判断误差是否大。同样,比较交叉验证误差和训练误差,来判断算法是否有高方差问题。通过这些方法,可以准确评估算法的偏差和方差问题。此外,学习曲线也是理解算法性能的一个有用工具。

2.方法二:建立学习曲线

学习曲线(Learning curves)是一种帮助你了解学习算法性能如何的方式,曲线随着经验的数量发生变化。,经验数量指的是算法所拥有的训练样本数。
(1)训练样本数的变化与J_train,J_cv
学习曲线帮助了解学习算法性能随训练样本数量变化的方式。横轴表示训练样本数,纵轴表示误差,包括训练误差(J_train)和交叉验证误差(J_cv)。当训练样本增多,交叉验证误差减少,因为模型变得更好。而训练误差则会增加,因为随着样本增多,模型很难完美拟合所有训练样本。少量样本时,训练误差接近零,但样本增多后,误差会增加。

通常交叉验证误差比训练误差高,因为模型更好地拟合了训练集。
在这里插入图片描述


(2)高偏差的学习曲线
高偏差情况下,训练误差和交叉验证误差随着样本增加,初期会下降但随后趋于平稳。这是因为模型太简单(如线性函数),无法适应更多数据,即使增加训练数据,误差也不会降低。

通过比较基准线(如人类表现),可以看到J_train与基准线的较大误差(间隙较大),说明高偏差问题。结论是,如果算法有高偏差,增加更多训练数据效果不大,需要其他方法改善算法性能。
在这里插入图片描述


(3)高方差的学习曲线
高方差情况下,训练误差(J_train)随训练集变大而增加,但交叉验证误差(J_cv)更高,两者之间差距大,表明模型在训练集上表现好但不能泛化。高方差的信号是交叉验证误差远高于训练误差。

增加训练数据有助于降低交叉验证误差,使其接近训练误差,从而改善算法性能。因此,扩展训练集对高方差算法有显著帮助,但对高偏差算法效果不大。总结来说,更多的训练数据可以帮助高方差算法降低误差,提高性能。在这里插入图片描述


总结

正常来讲,先判断模型出现了什么问题,通过建立性能基准水平或学习曲线,观察模型出现了高方差还是高偏差。然后在根据影响方差或偏差的因素,选择对应的方案优化模型。下一篇会通过案例应用本篇的两个过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1809080.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringSecurity入门(四)

18、权限管理/授权 18.1、针对url配置 配置SecurityConfig package com.wanqi.config;import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.security.config.annotation.web.bu…

基于STM32的595级联的Proteus仿真

文章目录 一、595级联1.题目要求2.思路3.仿真图3.1 未仿真时3.2 模式A3.2 模式B3.3 故障模式 二、总结 一、595级联 1.题目要求 STM32单片机,以及三个LED灯对应红黄绿灯,IIC的OLED显示屏,温湿度传感器DHT11,两个独立按键和两个5…

复数乘法IP核的使用

一、IP核解析 在这张图片中,我们看到的是一个“Complex Multiplier (6.0)” IP 核的配置界面。以下是各个配置参数的详细说明: 1.1 Multiplier Construction Use LUTs: 选择这个选项时,乘法器将使用查找表(LUTs)来实现…

【数据分析系列】交叉列联表与卡方检验:数据解读与Python实践应用

目录 一、交叉列联表和卡方检验的关系 (一)什么是交叉列联表 (二)什么是卡方检验 (三)除了卡方检验,列联表分析还可以结合其他统计方法 二、列联表只能用于两个分类变量吗? 三、…

随机点名软件,教师必备NO.106

事先需要新建一个txt文本文档,里面输入名单,一行一个 点击文件-导入TXT-点击开始抽取 资源来源于网络,免费分享仅供学习和测试使用,请勿用于商业用途,如有侵权请联系删除! 下载地址:点击查看…

CISCN2023 初赛部分复现

Misc 1. 被加密的生产流量 涉及到modbus协议 modbus && frame.len 66过滤之后,每条流量最后两个字节是base32的密文 脚本一键提取 #modbus_exp import pysharkflag tmp 0 cap pyshark.FileCapture(input_file"D:/下载/CTF附件/ciscn2023/modbu…

js调试过程中修改变量值

1.在想要变更的地方添加断点 2.添加监视表达式 3.执行网页代码,当执行到断点处则会停止 4.点击执行下一步,则会执行监视表达式

68. UE5 RPG 处理多个角色后续bug

我们现在已经有了四个敌人角色,接下来,处理一下在战斗中遇到的问题。 处理角色死亡后还会攻击的问题 因为我们有角色溶解的效果,角色在死亡以后的5秒钟才会被销毁掉。所以在这五秒钟之内,角色其实还是会攻击。主要时因为AI行为树…

MySQL基础---库的操作和表的操作(配着自己的实操图,简单易上手)

绪论​ 勿问成功的秘诀为何,且尽全力做您应该做的事吧。–美华纳;本章是MySQL的第二章,本章主要写道MySQL中库和表的增删查改以及对库和表的备份处理,本章是基于上一章所写若没安装mysql可以查看Linux下搭建mysql软件及登录和基本…

Android.基本用法学习笔记

设置文本的内容 先在strings.xml声明变量 方法1. 方法2. 设置文本的大小 1.单位dp,大家可以去学一下有关的单位换算 2. 设置文本颜色 1. 2. 4.设置文本背景颜色 1. 2. 设置视图的宽高 与上级视图一致,也就是上一级有多宽就有多少 1. 2. 3. 4. 设置视图…

1.VMware软件的安装与虚拟机的创建

1. VMware软件的安装 1.1 为什么需要虚拟机 嵌入式Linux开发需要在Linux系统下运行,我们选择Ubuntu。   1、双系统安装     有问题,一次只能使用一个系统。Ubuntu基本只做编译用。双系统安装不能同时运行Windows和Linux。   2、虚拟机软件   …

pytorch 实现语义分割(Pytorch 27)

一 语义分割 在目标检测问题中,我们一直使用方形边界框来标注和预测图像中的目标。下面探讨语义分割(semantic segmentation)问题,它重点关注于 如何将图像分割成属于不同语义类别的区域。 与目标检测不同,语义分割可…

k8s 1.28 搭建rabbitmq集群

1.环境 1.1 k8s 1.28 1.2 rabbit 3.8 1.3 工作空间default 1.4 注意,内存最好充足一点,因为我就两个节点一个master、一个node,起初我的node是8g,还剩3~4G,集群竟然一直起不来,后来将虚拟机内存扩大&#x…

ROS1配置husky仿真环境遇到的一些问题+方法论

ROS 系列学习教程(总目录) 本文目录 一、问题描述二、问题分析2.1 分析日志2.2 尝试一(失败)2.3 尝试二(成功) 三、husky仿真需要安装的软件包四、总结 - 方法论4.1 文件路径不合法4.2 文件内容不合法4.3 ROS 环境变量4.3.1 方法一…

consul做配置中心

1. 分布式配置中心 consul不仅可做注册中心,还可做配置中心 applicaiton.yml与bootstrap.yml: applicaiton.yml是用户级的资源配置项bootstrap.yml是系统级的,优先级更加高 Spring Cloud会创建一个“Bootstrap Context”,作为Spring应用…

blender

通用设置: 仅显示/取消隐藏:数字键盘/ 移动视角:shift鼠标中键 Blender如何给场景添加参考图片-百度经验 (baidu.com) 进入编辑模式:Tab 编辑模式:点-线-面 两个视图 法向显示:就能变成恶心的蓝红色 显…

AI大模型探索之路-实战篇16:优化决策流程:Agent智能数据分析平台中Planning功能实践

系列篇章💥 AI大模型探索之路-实战篇4:深入DB-GPT数据应用开发框架调研 AI大模型探索之路-实战篇5:探索Open Interpreter开放代码解释器调研 AI大模型探索之路-实战篇6:掌握Function Calling的详细流程 AI大模型探索之路-实战篇7…

设计软件有哪些?照明工具篇,渲染100邀请码1a12

阴影和照明涉及到图片的真实感和氛围,所以熟练使用照明工具是设计师的必备能力,这次我们介绍一些照明工具。 1、VRaySun VRaySun是VRay渲染器中的一个功能,用于模拟太阳光源。它是一种方便易用的光源类型,能够产生逼真的日光效果…

高考分数查询结果自动推送至微信(卷II)

祝各位端午节安康!只要心中无结,每天都是节,开心最重要! 在上一篇文章高考分数查询结果自动推送至微信(卷Ⅰ)-CSDN博客中谈了思路,今天具体实现。文中将敏感信息已做处理,读者根据自…

2024-6-10-Model-Agnostic Meta-Learning (MAML)

摘自:Meta-Transfer Learning for Zero-Shot Super-Resolution 近年来,提出了各种元学习算法。它们可以分为三类: 基于度量的方法:这些方法通过学习度量空间,使得在少量样本内进行高效的学习。例如[35, 38, 39]。基于…