数据分析常用模型合集(一)AARRR模型和漏斗模型

news2024/11/26 10:40:14

准备把常用的数据分析模型,像什么AARRR,RFM之类的,逐个全部写一下;

最好能带点案例和代码,搞一个小合集。

最终达到完全不懂的人,看完就能知道得差不多;

数据分析常用模型合集(二)RARRA模型、RFM模型-CSDN博客


一、为什么要学分析模型

这些模型有什么用呢?我认为有三个作用:

①帮我们从整体上理解和构造业务线,有时候公司业务比较多,看起来比较复杂,通过用模型划分的几个点一一拆解,我们就可以更容易理解公司赚钱的路子,亦能给改进业务线的带来启发;

②新公司,亦可以根据这个模型,设计自己的业务线。

③从数据上更好地进行分析,相当于给了我们固定的公式,方便我们直接套,若果能再叠加自己的经验、知识,将一些指标进一步细化,就能更好地从数据角度分析问题。

二、AARRR模型内容

AARRR模型也被称为海盗模型,也叫增长黑客理论模型,是2007年提出的,AARRR分别是Acquisition、Activation、Retention、Revenue、Referral,五个单词的缩写,分别对应用户生命周期中的5个阶段。

从一般的互联网行业来看,对应了业务增长实现的5个步骤;

其实AARRR也是一个漏斗模型,比如下图:

这么一看,其实感觉也没什么意义,那么我们进一步细化呢?

2.1 Acquisition用户获取

比如分析获取方面

通过进一步的拆解,我们挖掘出用户获取的几个渠道以及关键指标,当我们的公司挣W不够多的时候,我们可以看看是哪个地方相对比较差;

比如我们研发了一款“代搬砖APP”,通过付钱让别人帮你上班,我们推广的渠道有:①线上:通过WX朋友圈、各品牌手机应用商店付费推广、百度付费推广、短视频推广、各种博主恰饭推广等;②线下:地铁站,公交站、商场、写字楼等安装电子、纸质广告招牌等;③其他渠道:比如电视广告、报纸报刊等...

 通过各种方式吸引人来下载该软件,其中线上的广告数据是可掌控可知晓来源的,可以通过对比,看看哪个渠道效果好且便宜。

例子:微信朋友圈打广告,会有很多曝光量,其中有一部分人下载并注册了该软件,最终发现是一万块钱广告费,曝光量是20万次,下载人数并注册人数(去重)是5千人,那么该渠道的拉客成本是2块钱每人;

通过抖音推荐,用抖音的方式下载,花了一万块钱,曝光率有40万次,别人看完广告的完播次数有15万次,有6千人下载注册,那么对比下来,抖音看起来要好一些;

当然这个例子只是比较拉新客这一方面,实际上还要对比一下留存,要是抖音用户下载完了,很大比率当天或者几天内就会删掉,则留存率方面就没有微信强;

在此过程中:产生了 渠道曝光量、渠道下载注册量、日新增用户数等,如上图所示的一系列指标,原本复杂的事情,逐渐变得可以摸清规律,这就是模型存在的意义;

你是否也曾被忽悠过?

2.2 Activation激活

用户下载了该软件,还需要使用才行;

比如当年滴滴打车,早期的打车费听说很便宜,乘客可以便宜打到车,比出租车便宜多了,司机注册滴滴平台,不仅赚乘客的钱,还有平台补贴。美团饿了么抖音,都是采用各种补贴,吸引用户来使用该软件,比如新用户零元送一个小东西,并且是真的送,看短视频可以积累钱然后提现,当然这是前期攻城略地的策略。还可以利用推荐算法,通过浏览的商品和搜索记录,推送用户可能需要的商品,让点利,比如PDD新用户很容易搞到第一波各种优惠券,一般只要有了第一次,很容易有第二次、第三次,让用户尝点甜头后逐步习惯在这个平台购物。

在此过程中:产生了各个渠道激活用户的各项指标,比如日活跃用户数、日平均使用时长、发优惠券领取并使用人数、比例等,有数据就好比较,可以对比哪个方法激活用户最划算效果最好。

2.3Retention留存

要想办法,让用户喜欢用你的产品,并且养成习惯形成依赖,从心理上认为,买东西就要上某某平台(理想目标是这样),一般有不定时送优惠券诱导消费(平台先少赚点,放长线钓大鱼),限时送低价会员(因为用户冲了钱,不想浪费而越陷越深),小游戏如天天消消乐(达到多少积分免费送点小东西)等等方式。

在此过程中:一般有一日、三日、七日留存率等,也有各种促销活动优惠券领取率(看到推送给优惠券并同意领取)等。

2.4Revenue收益

以前我们都搞不清楚,为什么很多互联网软件一开始要砸钱抢占市场拼命拉客户,直到后面达到了行业“独占鳌头”,我们才明白了,只要用户量高,前期再怎么烧钱,后面依然可以赚回来.

比如短视频平台可以吸引商家来入驻,商家想买东西,就得花钱买排名、买推广、付费报名参加活动,并且每一单都有提成,同时给普通用户推送广告,又满足了商家的推广需求,又引导了用户消费,可以说只要用户量大,基本可以为所欲为。

在此过程中:有付费率(付费用户占活跃用户的比例),平均每用户带来的收益,平均每付费用户收益,用户生命周期价值等指标。

2.5Referral传播

我们希望通过一个成熟的用户,让用户给他的亲戚朋友七大姑八大姨推广我们的产品,一般给他一点小小的好处,让他上钩,同时拉到的新客户也先免费送点小东西,例如一分购买几包卫生纸,从而实现拉新,毕竟大部分都会比较相信亲近的人的推荐。

在此过程中:有转发率(成熟用户看到了转发有好处,并愿意转发的比例),K因子(发出的邀请数量)*(接到邀请并成功转化为新用户的比例)等指标;


相信通过上面简单的讲解, 我们已经基本了解模型的作用,不仅可以帮助我们理解整体的业务,还可以进一步细化其中环节,衍生出相应的数据指标,进而可以对比分析。

你是否在寻找一个带数据的案例?

AARRR模型要获取公司完整的数据,并分析各方面业务数据,且是一个长期的过程,但凡谁有完整真实的案例,那都得进去缝纫机踩到冒烟。

一些参考性的指标和思路可以看看下图:

其中产生的指标,可以参考,当然AARRR模型是一个思路,要灵活运用:

三、漏斗模型

其实AARRR也是漏斗模型的一种。

漏斗模型,即业务流程,从开始到最后完成盈利,有一个过程,而一般每一步用户都会减少,漏斗模型即拆解每一步,查看每一步详细情况,制定指标,优化运营方法。

3.1电商漏斗模型

 

那我们如何借助漏斗模型帮助我们实现目标呢?

1.帮我们快速定位出问题的环节,比如哪个渠道用户转化率较其他渠道明显偏低,是在哪个环节出了问题,哪一环节可提升空间大,毕竟提升弱项比增加强项,往往更容易成效也更明显。

2.针对问题,进行各方面多维度对比分析,进行优化。

3.持续监控,有了一个基准,在更新优化,可以对比查看,优化前和优化后,哪个更好。

3.2其他漏斗模型

 看看就行,有些模型噱头大于实际作用。

图来源:如何理解并应用漏斗模型? - 知乎 (zhihu.com)

四、AARRR模型画图

matplotlib和seaborn没有这种图,excel也可以强行画但不推荐,不好看且麻烦,自己画可以使用pyecharts,或者BI工具基本都有漏斗的模板。

from pyecharts import options as opts
from pyecharts.charts import Funnel

data = [13543, 11413, 10982, 7765, 5918]
phase = ['新用户', '激活用户', '留存用户', '消费用户', '传播用户']

funnel = Funnel(init_opts=opts.InitOpts())
funnel.add("阶段", [list(z) for z in zip(phase, data)])
funnel.set_global_opts(title_opts=opts.TitleOpts(title="AARRR模型"))
funnel.render("AARRR.html")

五、写在最后

本文只是一个引子,看了可能有点收获,但并不多,还要加深巩固一下:

我将筛选过的一些AARRR方面比较好的文章,由于AARRR模型是一整套业务线条的内容,所以基本不会有人自爆家底,写一本厚厚的内容详细阐述各方面的数据,我认为值得一看的链接附上,亦是本文参考:

AARRR(海盗模型)|原理+Python可视化实现-阿里云开发者社区 (aliyun.com)

电商AARRR模型分析(一)——R语言 - 郝hai - 博客园 (cnblogs.com)

抖音AARRR模型分析 - 简书 (jianshu.com)

用AARRR模型分析拼多多用户增长方式 | 人人都是产品经理 (woshipm.com)

AARRR模型案例:利用数据优化渠道投放,并实现用户增长 | 人人都是产品经理 (woshipm.com)

以网易云音乐为例,基于AARRR模型分析用户增长 | 人人都是产品经理 (woshipm.com)

数据分析思维:一文读懂漏斗分析 | 人人都是产品经理 (woshipm.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1805663.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

中心极限定理的MATLAB例

独立同分布的中心极限定理: 设 X 1 , X 2 , … , X n X_1, X_2, \ldots, X_n X1​,X2​,…,Xn​ 是独立同分布的随机变量序列,且 E ( X i ) μ E(X_i) \mu E(Xi​)μ, D ( X i ) σ 2 > 0 D(X_i) \sigma^2 > 0 D(Xi​)σ2>0&a…

再读高考作文题

新课标I卷:讨论了随着互联网和人工智能的普及,问题是否会变得越来越少,要求考生写一篇文章,表达自己对于这一现象的联想和思考。 从来就没有什么救世主 AI也不是​​​​​ 一直不会写作文,直到高中,才堪堪…

ssm604基于Java Web的怀旧唱片售卖系统+vue【已测试】

前言:👩‍💻 计算机行业的同仁们,大家好!作为专注于Java领域多年的开发者,我非常理解实践案例的重要性。以下是一些我认为有助于提升你们技能的资源: 👩‍💻 SpringBoot…

AI Agentic Design Patterns with AutoGen(上):顺序对话、代理反思

文章目录 一、多代理对话:单口喜剧1.1 Agent的基本功能1.2 多代理对话示例:单口喜剧1.2.1 创建Agent1.2.2 开始对话1.2.3 查看对话信息,自定义对话摘要1.2.4 设置对话终止条件 二、顺序对话:客户入职2.1 创建Agent2.2 构建顺序对话…

profile-3d-contrib,github三维立体图的使用

图片展示: 参考: https://zhuanlan.zhihu.com/p/681786778 原仓库链接: GitHub - yoshi389111/github-profile-3d-contrib: This GitHub Action creates a GitHub contribution calendar on a 3D profile image. 第一步 在你的个人仓库下找到Actions 第二步 点…

揭秘:币圈黑科技私钥碰撞器的项目教程玩法,外面竟然收费200+

一、前言:探寻币圈私钥探测器神秘面纱 在风华正茂的币圈,不仅有无数高涨或者暴跌的数字货币,更有许多被誉为“黑科技”的工具备受热议。其中,私钥碰撞器就是这些黑科技中的一员,它能够搜索并碰撞出特定地址的私钥&…

嘉立创面板制作不规则图案技巧

首先附上效果图展示: 所需软件:嘉立创EDA(专业版)、photoshop、Adobe Illustrator 嘉立创EDA(专业版): 嘉立创面板绘制很容易上手,只要了解这几个图层的作用便可以做出自己想要的面板。 材料边界层: 代表选⽤的材料…

SpringAI的Transform入门

Transform转换 帮助将文档分割以适应 AI 模型的上下文窗口。 假如我们想要用 openai api 对一个段文本进行总结,我们通常的做法就是直接发给 api 让他总结。但是如果文本超过了 api 最大的 token 限制就会报错。这时,我们一般会进行对文章进行分段&#…

Linux线程安全:线程互斥

一、线程互斥的概念 1.1临界资源与互斥的关系 临界资源:多线程执行流共享的资源就叫做临界资源。 临界区:每个线程内部,访问临界资源的代码,就叫做临界区。 互斥:任何时刻,互斥保证有且只有一个执行流进入…

[书生·浦语大模型实战营]——LMDeploy 量化部署 LLM 实践

1.基础作业 1.1配置 LMDeploy 运行环境 创建开发机 创建新的开发机,选择镜像Cuda12.2-conda;选择10% A100*1GPU;点击“立即创建”。注意请不要选择Cuda11.7-conda的镜像,新版本的lmdeploy会出现兼容性问题。其他和之前一样&…

算法刷题【二分法】

题目: 注意题目中说明了数据时非递减的,那么这样就存在二分性,能够实现logn的复杂度。二分法每次只能取寻找特定的某一个值,所以我们要分别求左端点和有端点。 分析第一组用例得到结果如下: 成功找到左端点8 由此可知&#xff0…

【SpringBoot + Vue 尚庭公寓实战】标签和配套管理接口实现接口实现(六)

【SpringBoot Vue 尚庭公寓实战】标签和配套管理接口实现接口实现(六) 文章目录 【SpringBoot Vue 尚庭公寓实战】标签和配套管理接口实现接口实现(六)1、保存或更新标签信息2、根据id删除标签信息3、根据类型查询配套列表4、新…

Vite - 开发初体验,以及按需导入配置

目录 开始 创建一个 Vite 项目 项目结构 /src/main.js index.html package.json vite.config.js Vite 项目中使用 vue-router Vite 组件的“按需引入” 传统的方式引入一个组件 传统方式引入带来的问题 解决办法(配置 按需引入 插件) 示例&…

CBoard开源数据可视化工具

CBoard开源数据可视化工具 文章目录 CBoard开源数据可视化工具介绍资源列表基础环境一、安装JDK二、安装Maven2.1、安装Maven2.2、配置Maven 三、安装Tomcat8四、安装MySQL5版本4.1、安装相关依赖4.2、二进制安装4.3、设定配置文件4.4、配置systemcatl方式启动4.5、访问MySQL数…

PVE|中小型虚拟化平台|proxmox-ve的安装部署和初步使用

一、 虚拟化平台简单介绍 市面上虚拟化工具或者说虚拟机平台是非常多的,比如,openshifit,open stack,华为云的魔改open stack 的HCE,VMware workstation,VMware sphere,VMware esix&#xff0…

2024年11个博客初学者建议

博客仍然是在线赚钱的最佳机会之一,因为您可以吸引受众,然后销售产品、服务或赞助。 然而,如果您刚刚开始博客生涯,那么建立一个可以带来数千美元收入的博客的前景可能会让您感到畏惧。 博客领域的竞争比以往更加激烈&#xff0…

稀疏高效扩散模型:推动扩散模型的部署与应用

数据驱动的世界中,生成模型扮演着至关重要的角色,尤其是在需要创建逼真样本的任务中。扩散模型(Diffusion Models, DM),以其卓越的样本质量和广泛的模式覆盖能力,已经成为众多数据生成任务的首选。然而&…

【图论】Leetcode 130. 被围绕的区域【中等】

被围绕的区域 给你一个 m x n 的矩阵 board ,由若干字符 ‘X’ 和 ‘O’ ,找到所有被 ‘X’ 围绕的区域,并将这些区域里所有的 ‘O’ 用 ‘X’ 填充。 示例 1: 输入: board [[“X”,“X”,“X”,“X”],[“X”,“O…

【PL理论】(12) F#:模块 | 命名空间 | 异常处理 | 内置异常 |:? | 相互递归函数

💭 写在前面:本章我们将介绍 F# 的模块,我们前几章讲的列表、集合和映射都是模块。然后我们将介绍 F# 中的异常,以及内置异常,最后再讲解一下相互递归函数。 目录 0x00 F# 模块(Module) 0x01…

UFS协议入门-分层结构

写在前面:本文参考UFS jedec3.1,本文思维导图如下 1. 分层概述 UFS协议分为3层,从上至下分别是:应用层(UAP),传输层(UTP),互联层(UIC),具体结构如下图所示。 2.1 应用层 在应用层(UAP)中,包括:UFS指令集(UCS),设备管理器(Device Manager),任务管理器(Task Manager…