【ARM Cache 及 MMU 系列文章 6 -- Cache 寄存器 CTR_EL0 | CLIDR | CCSIDR | CSSELR 使用详解 1】

news2024/11/27 1:44:16


请阅读【ARM Cache 及 MMU/MPU 系列文章专栏导读】
及【嵌入式开发学习必备专栏】


文章目录

  • Cache 常用寄存器
    • Cache CSSELR 寄存器
      • Cache CSSELR 使用场景
      • Cache CSSELR 操作示例
    • Cache CLIDR 寄存器
      • LoUU 介绍
        • LoUU 使用
      • LoUIS 介绍
      • CLIDR 使用
    • Cache CCSIDR 寄存器
    • Cache CTR_EL0

在这里插入图片描述

Cache 常用寄存器

ARM Cache 常用到寄存器有以下几个:

  • CSSELR, Cache Size Selection Register
  • CLIDR, Cache Level ID Register
  • CTR, Cache Type Register
  • CCSIDR, Current Cache Size ID Register

Cache CSSELR 寄存器

在这里插入图片描述
CSSELR(Cache Size Selection Register)是ARM架构中用于选择当前缓存大小ID寄存器(CCSIDR)的寄存器。通过指定所需的缓存级别和缓存类型(指令缓存或数据缓存),可以让处理器知道当前操作的是哪一级和类型的缓存。如果实现了FEAT_CCIDX特性,CSSELR还可以用来选择当前的CCSIDR2寄存器。

寄存器映射:

  • 对于AArch32状态,CSSELR寄存器的位[31:0]直接映射到AArch64状态的CSSELR_EL1寄存器的位[31:0]。

此寄存器仅在EL1能够使用AArch32状态时存在。如果不支持AArch32,直接访问CSSELR将是未定义的。

字段解释:

  • Level (位[3:1]): 所需缓存的缓存级别。如果CSSELR中的{level, ind}被设置为一个未实现的缓存级别,那么读取CSSELR时,这个字段的值是未知的。
    • 0b000 Level 1 cache.
    • 0b001 Level 2 cache.
    • 0b010 Level 3 cache.
    • 0b011 Level 4 cache.
    • 0b100 Level 5 cache.
    • 0b101 Level 6 cache.
    • 0b110 Level 7 cache.

  • IND (位[0]): 指令非数据位。它指示选择的是指令缓存还是数据(或统一)缓存。允许的值有:
    • 0b0:数据缓存或统一缓存。
    • 0b1:指令缓存。

Cache CSSELR 使用场景

通过编程CSSELR寄存器,软件可以查询CCSIDR(或CCSIDR2,如果使用feat_ccidx)以获取特定级别和类型的缓存的详细配置信息,包括缓存的大小、行大小、关联性等。这对于理解和优化系统性能至关重要,因为不同级别和类型的缓存可能具有不同的特性和性能影响。

例如,在性能调优或者系统初始化时,了解具体的缓存参数可以帮助开发者更好地设计数据结构和算法,以减少缓存未命中(misses)和提高数据访问效率。

Cache CSSELR 操作示例

例如要操作 L1 Dcache,可以这样编程CSSELR寄存器:

MOV X0, #0  			  // 选择L1数据缓存,Level = 0b001, IND = 0b0
MSR CSSELR_EL1, X0  	  // 写入CSSELR_EL1寄存器
ISB              		  // 确保更新立即生效

接下来,就可以通过读取CCSIDR_EL1寄存器来获取L1数据缓存的配置信息了。这种灵活的选择和查询机制为软件提供了强大的工具,以便根据系统的实际缓存配置进行优化和调试

Cache CLIDR 寄存器

CLIDR(Cache Level ID Register)是ARM架构中用以识别每个级别上实现的缓存类型的寄存器,以及通过set/way方式操作缓存可以管理的缓存级别,最多可达七个级别。此外,CLIDR还标识了cache level结构的一致性级别(Level of Coherence, LOC)和 Level of Unification, LOU。
在这里插入图片描述

寄存器映射

  • 对于AArch32状态,CLIDR寄存器的位[31:0]直接映射到AArch64状态的CLIDR_EL1寄存器的位[31:0]。

该寄存器仅在EL1能够使用AArch32状态时存在。否则,直接访问CLIDR将是未定义的。

字段详解:

  • ICB, 位[31:30]:内部缓存边界(Inner Cache Boundary)。这个字段指示了内部可缓存内存区域的边界。

    • 0b00 Not disclosed by this mechanism.
    • 0b01 L1 cache is the highest Inner Cacheable level.
    • 0b10 L2 cache is the highest Inner Cacheable level.
    • 0b11 L3 cache is the highest Inner Cacheable level.
  • LOUU, bits[29:27]:缓存层次结构的单处理器统一级别(Level of Unification Uni-processor), 具体见下节内容。

  • LOC, bits[26:24]:缓存层次结构的一致性级别(Level of Coherence)。

  • LOUIS, bits[23:21]:缓存层次结构内部共享的统一级别(Level of Unification Inner Shareable)。当实现feat_s2fwb特性时,架构同样要求这个字段为0。

  • CType, bits[3(n-1)+2:3(n-1)], 对于 n = 7 到 1:缓存类型字段, 描述各个缓存等级的的类型。比如Ctype1字段,描述的是Level1缓存的类型。可以有以下值:

  • 0b000 No cache,表示无缓存

  • 0b001 Instruction cache only.表示只有指令缓存

  • 0b010 Data cache only.表示只有数据缓存

  • 0b011 Separate instruction and data caches.单独的指令缓存和数据缓存

  • 0b100 Unified cache.统一的缓存

  • 其他 保留字段

LoUU 介绍

LoUU(Level of Unification, Uniprocessor)是ARMv9架构中的术语,指在针对处理器元素(PE)执行PoU clean 或者 invalidate 时,必须clean或invalidate的最后一级缓存。与LOC(Level of Coherence,一致性级别)类似,LoUU的值也代表了一个缓存级别。

  • LoUU字段值为0x0时,意味着在执行到 PoU clean 或 invalidate 时,不需要clean 或者 invalidate任何缓存级别。这种情况下,可以认为所有的缓存操作都是在一个更紧密的层次结构内完成,不需要对外部cache level结构进行任何操作。
  • 如果LoUU字段值是一个非零值,且对应的缓存级别没有被实现,这表示所有已实现的缓存都位于PoU之前。这意味着,一旦数据到达了这个指定的缓存级别,就认为它已经处于一个对所有处理器核心来说,可视为统一的状态。
LoUU 使用

LoUU的概念主要用于处理器的缓存维护操作中,确保在执行某些特定的内存操作(如上下文切换、DMA操作前后或在运行关键任务代码之前)时,处理器可以正确地管理其缓存数据,保证数据的一致性和正确性。在多核处理器系统中,这一点尤为重要,因为不同核心间的数据共享和同步需要仔细控制。

假如一个系统,其LoUU值被设置为2,表示L2缓存是执行到 PoU clean 或者 invalidate操作时必须clean 或者 invalidate的最后一级缓存。这意味着,如果一个核心需要保证其修改对其他核心可见,它需要确保至少对 L2 缓存执行了clean 或者 invalidate操作。

关于PoC 和 PoU 的详细内容见:【ARM Cache 系列文章 2 – Cache Coherence及内存顺序模学习】

LoUIS 介绍

LOUIS 用于描述在内部共享的共享域(Inner Shareable Shareability Domain)执行统一点(Point of Unification)clean 或者 invalidate操作时,必须clean 或者 invalidate的最后一级缓存。

Inner Shareable Shareability Domain 是指可以在处理器的多个核心或处理单元间共享数据的特定区域。内部共享的共享域允许数据在不同的处理单元间高效共享,优化了数据同步和通信。

  • LOUIS字段值为0x0时,意味着在针对Inner Shareable Shareability Domain 执行到PoU的clean 或者 invalidate操作时,不需要对任何缓存级别进行clean 或者 invalidate。

  • 如果LOUIS字段值是非零且对应的缓存级别未被实现,这表明所有已实现的缓存都位于PoU之前。

CLIDR 使用

CLIDR_EL1寄存器为软件提供了一种机制来发现并理解系统中实现的cache level结构,包括:

  • 缓存的类型(如数据缓存、指令缓存或统一缓存)和级别。
  • 系统的缓存一致性和统一性特性。

通过检查CLIDR_EL1,系统软件(如操作系统或固件)可以确定如何有效地利用和维护缓存,优化性能,特别是在设计多线程和多核心处理的高效缓存一致性策略时。

Cache CCSIDR 寄存器

如果实现了 FEAT_CCIDX 则该寄存器定义如下:
在这里插入图片描述
否则定义如下:
在这里插入图片描述
CCSIDR(Current Cache Size ID Register)是ARM架构中用于提供当前选定缓存结构信息的寄存器。当实现了FEAT_CCIDX 特性时,该寄存器与CCSIDR2结合使用。在AArch32系统寄存器中,CCSIDR的位[31:0]在架构上映射到AArch64系统寄存器CCSIDR_EL1的位[31:0]。只有在EL1能够使用AArch32状态时,该寄存器才存在。否则,直接访问CCSIDR是未定义的。

  • bits [27:13] NUMSETS:定义了缓存中集合(Set)的数量。这个值是缓存中实际集合数减去1,因为它是从0开始计数的。
  • bits [12:3]ASSOCIATIVITY:定义了缓存的关联度。这个值同样是实际关联度减去1的结果, 比如 如果Associativity = 3,则说明有4个way。
  • bits [2:0] LINESIZE:定义了缓存行的大小。这个值是以字节为单位,实际大小为 2(LINESIZE+4) 字节。例如,如果LINESIZE字段的值是4,那么缓存行大小为 2(4+4) = 256字节。

在访问CCSIDR之前,必须先在CSSELR寄存器中写入正确的值

Cache CTR_EL0

这里及Cortex-A520 core 为例进行介绍,寄存器组成如下:
在这里插入图片描述
IminLine, bits [3:0]:指令缓存(Instruction Cache)中的一个cache line中,包含的字(word)的数量。其值做了一次log2的运算。若一个cache line中包含16个word(64bytes),则DminLine的值应为 0b100 = 4
L1Ip, bits [15:14]:Level1 中的指令缓存(instruction cache)的缓存策略。指示了index和tag的生成方式。可能包含的值如下,其中,VIPT和PIPT较常使用:

  • 0b00—VMID aware Physical Index, Physical tag (VPIPT)
  • 0b01—ASID-tagged Virtual Index, Virtual Tag (AIVIVT)
  • 0b10—Virtual Index, Physical Tag (VIPT)
  • 0b11—Physical Index, Physical Tag (PIPT)

DminLine, bits [19:16]:数据缓存(Data Cache)和统一缓存(Unified Cache)中的一个cache line中,包含的字(word)的数量。其值做了一次log2的运算。若一个cache line中包含16个word,则DminLine的值应为 0b100 = 4.
在这里插入图片描述

推荐阅读:
https://blog.csdn.net/luolaihua2018/article/details/119271704

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1803114.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

手把手教你实现条纹结构光三维重建(1)——多频条纹生成

关于条纹结构光三维重建的多频相移、格雷码、格雷码相移、互补格雷码等等编码方法,我们在大多数平台上,包括现在使用语言大模型提问,都可以搜到相关的理论,本人重点是想教会你怎么快速用代码实现。 首先说下硬件要求,…

【NI国产替代】500 MSPS 采样率,14 bit 分辨率数据采集盒子

• 双高速高精度数据采集通道 • 支持内外精准触发采样模式 • 丰富的总线控制接口 • 抗干扰能力强 高速采集盒子是一款双通道,具有 500 MSPS 采样率,14 bit 分辨率的高速高精度数据采集设备,其模拟输入带宽为 200 MHz,…

【MySQL】常见可执行程序

本文使用的版本是MySQL8,5.7可能会有所不同。 MySQL提供了一些重要的程序用来管理和操作数据库。这里会介绍一些常用的程序及其使用。对于MySQL程序的使用,可以查看官方帮助手册来学习。 MySQL :: MySQL 8.0 Reference Manual :: 6 MySQL Programs 程序…

SM201,SM203主控模块备件

SM201,SM203主控模块备件。MACSV软件安装;二、软件组成及各部分功能;三、组态流程;四、组态详解SM201,SM203主控模块备件(组态各部分的操作过程及基本原理)。一、MACSV系统软件安装软件安装——计算机角色在每台计算机…

基于STM32智能小车

一、前置准备 前置知识:需要学习stm32,建议去b站看江科大的视频,讲的很详细,学完串口那一块就可以制作了,软件用的是Keil5,开发语言C语言,手机连接蓝牙模块软件是蓝牙调试器。 需要准备的器件…

How To: Localize Bar and Ribbon Skin Items

您可以使用Localizer对象自定义皮肤菜单,而不是迭代每个条形皮肤子菜单项和功能区皮肤库项容器来手动修改这些项。此方法允许您同时自定义所有现有栏子菜单和功能区库中的外观项目。 创建BarLocalizer类的派生类并重写XtraLocalizer.GetLocalizedString方法。 pub…

HTTP-web服务器

web服务器 web服务器实现了http和相关的tcp连接处理,负责管理web服务器提供的资源,以及对服务器的配置,控制以及拓展等方面的管理 web服务器逻辑实现了http协议,并负责提供web服务器的管理功能,web服务器逻辑和操作系…

springboot + Vue前后端项目(第十五记)

项目实战第十五记 写在前面1.后端接口实现1.1 用户表添加角色字段1.2 角色表增加唯一标识字段1.3 UserDTO1.4 UserServiceImpl1.5 MenuServiceImpl 2. 前端实现2.1 User.vue2.2 动态菜单设计2.2.1 Login.vue2.2.2 Aside.vue 2.3 动态路由设计2.3.1 菜单表新增字段page_path2.3.…

开源规则引擎LiteFlow项目应用实践

本文介绍基于开源规则引擎LiteFlow,如何开发规则设计器,在低代码平台中集成规则引擎,并在项目中实现应用的效果。由于低代码平台使用规则引擎实现了逻辑编排的需求,所以本文中的叫法为“逻辑设计”、“逻辑编排”、“逻辑流引擎”…

kafka的leader和follower

leader和follower kafka的leader和follower是相对于分区有意义的,不是相对于broker。 因为每个分区都有leader和follower, leader负责读写数据。 follower负责复制leader的数据保存到自己的日志数据中,并在leader挂掉后重新选举出leader。 kafka会再…

Javascript全解(基础篇)

语法与数据类型 语法 var\let\const var 声明一个变量,可选初始化一个值。 let 声明一个块作用域的局部变量,可选初始化一个值。 const 声明一个块作用域的只读常量。 用 var 或 let 语句声明的变量,如果没有赋初始值,则其值为 …

基于VS2022编译GDAL

下载GDAL源码;下载GDAL编译需要依赖的必须代码,proj,tiff,geotiff三个源码,proj需要依赖sqlite;使用cmake编译proj,tiff,geotiff;proj有版本号要求;使用cmake…

go语言实战--基于Vue3+gin框架的实战Cetide网项目(讲解开发过程中的各种踩坑)

最近被要求学习go语言开发,也就做一个项目实战巩固一下,也分享一下关于gin框架的实战项目 (后续应该还是会继续学习Java,这一期还是做一个govue的) 经过一段时间的开发过后,感觉现在的开发效率要快不少了&…

Unity2D游戏制作入门 | 12(之人物受伤和死亡的逻辑动画)

上期链接:Unity2D游戏制作入门 | 11(之人物属性及伤害计算)-CSDN博客 上期我们聊到了人物的自身属性和受伤时的计算,我们先给人物和野猪挂上属性和攻击属性的代码,然后通过触发器触发受伤的事件。物体(人物也好敌人也行&#xff…

使用 Scapy 库编写 ICMP 不可达攻击脚本

一、介绍 ICMP不可达攻击是一种利用ICMP(Internet Control Message Protocol)不可达消息来干扰或中断目标系统的网络通信的攻击类型。通过发送伪造的ICMP不可达消息,攻击者可以诱使目标系统认为某些网络路径或主机不可达,从而导致…

vue2中如何使用函数式组件

vue2 中如何使用函数式组件 用 render 定义函数式组件如何处理 props如何在函数式组件中触发自定义事件?injection如何使用 computed 和 methods定义一个函数式组件的 MyButton函数式组件有何优势哪种场景适合使用函数式组件函数式组件的问题参考 函数式组件&#x…

WPS JSA 宏脚本入门和样例

1入门 WPS window版本才支持JSA宏的功能。 可以自动化的操作文档中的一些内容。 参考文档: WPS API 参考文档:https://open.wps.cn/previous/docs/client/wpsLoad 微软的Word API文档:Microsoft.Office.Interop.Word 命名空间 | Microsoft …

测试工具链

缺陷管理 bug管理工具 devops---项目管理--缺陷管理 bug管理地址 https://devsecops.mychery.com:8443/chery/project?filterROLE&statusACTIVE bug管理环境 采用公司的devops平台,对每个项目的bug进行管理。目前在使用 接口测试和服务端性能测试 工具…

基础乐理入门

基础概念 乐音:音高(频率)固定,振动规则的音。钢琴等乐器发出的是乐音,听起来悦耳、柔和。噪音:振动不规则,音高也不明显的音。风声、雨声、机器轰鸣声是噪音,大多数打击乐器&#…

【CS.SE】使用 docker pull confluentinc/cp-kafka 的全面指南

文章目录 1 引言2 准备工作2.1 安装 Docker2.1.1 在 Linux 上安装 Docker2.1.2 在 macOS 上安装 Docker2.1.3 在 Windows 上安装 Docker 2.2 验证 Docker 安装 3 拉取 confluentinc/cp-kafka Docker 镜像3.1 拉取镜像3.2 验证镜像 4 运行 Kafka 容器4.1 启动 ZooKeeper4.2 启动…