Linux: ubi rootfs 故障案例 (1)

news2025/1/15 12:04:47

文章目录

  • 1. 前言
  • 2. ubi rootfs 故障现场
  • 3. 故障分析与解决
  • 4. 参考资料

1. 前言

限于作者能力水平,本文可能存在谬误,因此而给读者带来的损失,作者不做任何承诺。

2. ubi rootfs 故障现场

问题故障内核日志如下:

Starting kernel ...

[    0.000000] Booting Linux on physical CPU 0x0
[    0.000000] Linux version 4.19.94-g1194fe2-dirty (bill@bill-virtual-machine) (gcc version 5.3.1 20160113 (Linaro GCC 5.3-2016.02)) #21 PREEMPT Tue Jun 4 10:18:44 CST 2024
[    0.000000] CPU: ARMv7 Processor [413fc082] revision 2 (ARMv7), cr=10c5387d
......
[    0.000000] Kernel command line: console=ttyO0,115200n8 root=ubi0:rootfs rw ubi.mtd=NAND.rootfs,2048 rootfstype=ubifs rootwait=1
......
[    1.713970] nand: device found, Manufacturer ID: 0x2c, Chip ID: 0xda
[    1.720358] nand: Micron MT29F2G08AAD
[    1.724091] nand: 256 MiB, SLC, erase size: 128 KiB, page size: 2048, OOB size: 64
[    1.731736] nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme
[    1.737188] 11 fixed-partitions partitions found on MTD device omap2-nand.0
[    1.744196] Creating 11 MTD partitions on "omap2-nand.0":
[    1.749624] 0x000000000000-0x000000020000 : "NAND.SPL"
[    1.755917] 0x000000020000-0x000000040000 : "NAND.SPL.backup1"
[    1.762654] 0x000000040000-0x000000060000 : "NAND.SPL.backup2"
[    1.769446] 0x000000060000-0x000000080000 : "NAND.SPL.backup3"
[    1.776214] 0x000000080000-0x0000000c0000 : "NAND.u-boot-spl-os"
[    1.783272] 0x0000000c0000-0x0000001c0000 : "NAND.u-boot"
[    1.790358] 0x0000001c0000-0x0000001e0000 : "NAND.u-boot-env"
[    1.797050] 0x0000001e0000-0x000000200000 : "NAND.u-boot-env.backup1"
[    1.804438] 0x000000200000-0x000000a00000 : "NAND.kernel"
[    1.818114] 0x000000a00000-0x00000e000000 : "NAND.rootfs"
[    2.024110] 0x00000e000000-0x000010000000 : "NAND.userdata"
......
[    2.162435] ubi0: attaching mtd9
[    2.166572] ubi0 error: validate_ec_hdr: bad VID header offset 512, expected 2048
[    2.174146] ubi0 error: validate_ec_hdr: bad EC header
[    2.179304] Erase counter header dump:
[    2.183118]  magic          0x55424923
[    2.186881]  version        1
[    2.189856]  ec             0
[    2.192829]  vid_hdr_offset 512
[    2.195994]  data_offset    2048
[    2.199232]  image_seq      2007489760
[    2.203004]  hdr_crc        0xbe9cfce9
[    2.206763] erase counter header hexdump:
[    2.210810] CPU: 0 PID: 1 Comm: swapper Not tainted 4.19.94-g1194fe2-dirty #21
[    2.218072] Hardware name: Generic AM33XX (Flattened Device Tree)
[    2.224199] Backtrace: 
[    2.226668] [<c010bfe4>] (dump_backtrace) from [<c010c2b4>] (show_stack+0x18/0x1c)
[    2.234283]  r7:00000000 r6:00000000 r5:cf04c000 r4:cf675c00
[    2.239970] [<c010c29c>] (show_stack) from [<c09531b4>] (dump_stack+0x24/0x28)
[    2.247237] [<c0953190>] (dump_stack) from [<c064da18>] (validate_ec_hdr+0xa0/0xe4)
[    2.254942] [<c064d978>] (validate_ec_hdr) from [<c064e600>] (ubi_io_read_ec_hdr+0x1b4/0x204)
[    2.263546]  r7:cf04c000 r6:55424923 r5:cf675c00 r4:00000000
[    2.269233] [<c064e44c>] (ubi_io_read_ec_hdr) from [<c0653a40>] (ubi_attach+0x1b8/0x1464)
[    2.277464]  r10:cf76f000 r9:00000000 r8:00000000 r7:cf675c00 r6:cf04c000 r5:cf734a00
[    2.285336]  r4:cf736240
[    2.287884] [<c0653888>] (ubi_attach) from [<c0647f78>] (ubi_attach_mtd_dev+0x42c/0xbc4)
[    2.296023]  r10:00020000 r9:cf721400 r8:c0e03048 r7:00000000 r6:cf721400 r5:cf04c000
[    2.303893]  r4:0000103f
[    2.306445] [<c0647b4c>] (ubi_attach_mtd_dev) from [<c0d26378>] (ubi_init+0x184/0x22c)
[    2.314410]  r10:c0e370cc r9:c0c2a8e8 r8:c0c2a8bc r7:c0e85e64 r6:cf721400 r5:c0e85e68
[    2.322270]  r4:00000000
[    2.324830] [<c0d261f4>] (ubi_init) from [<c01026ac>] (do_one_initcall+0x5c/0x1a4)
[    2.332435]  r10:00000008 r9:c0e03048 r8:00000000 r7:c0d261f4 r6:ffffe000 r5:c0e4f140
[    2.340306]  r4:c0e4f140
[    2.342859] [<c0102650>] (do_one_initcall) from [<c0d00f34>] (kernel_init_freeable+0x13c/0x1d4)
[    2.351610]  r9:c0d00620 r8:000000f8 r7:c0d3e834 r6:c0d51d64 r5:c0e4f140 r4:c0e4f140
[    2.359404] [<c0d00df8>] (kernel_init_freeable) from [<c09689d8>] (kernel_init+0x10/0x118)
[    2.367716]  r10:00000000 r9:00000000 r8:00000000 r7:00000000 r6:00000000 r5:c09689c8
[    2.375587]  r4:00000000
[    2.378132] [<c09689c8>] (kernel_init) from [<c01010e8>] (ret_from_fork+0x14/0x2c)
[    2.385743] Exception stack(0xcf051fb0 to 0xcf051ff8)
[    2.390816] 1fa0:                                     00000000 00000000 00000000 00000000
[    2.399040] 1fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
[    2.407263] 1fe0: 00000000 00000000 00000000 00000000 00000013 00000000
[    2.413914]  r5:c09689c8 r4:00000000
[    2.417506] ubi0 error: ubi_io_read_ec_hdr: validation failed for PEB 0
[    2.424265] ubi0 error: ubi_attach_mtd_dev: failed to attach mtd9, error -22
[    2.431373] UBI error: cannot attach mtd9
[    2.436450] input: volume_keys@0 as /devices/platform/volume_keys@0/input/input0
[    2.444593] omap_rtc 44e3e000.rtc: setting system clock to 2000-01-01 00:00:00 UTC (946684800)
[    2.453894] ALSA device list:
[    2.456888]   #0: crt_audio_bus
[    2.460684] VFS: Cannot open root device "ubi0:rootfs" or unknown-block(0,0): error -19
[    2.468832] Please append a correct "root=" boot option; here are the available partitions:
[    2.477272] 0100           65536 ram0 
[    2.477276]  (driver?)
[    2.483432] 0101           65536 ram1 
[    2.483435]  (driver?)
[    2.489561] 0102           65536 ram2 
[    2.489563]  (driver?)
[    2.495704] 0103           65536 ram3 
[    2.495706]  (driver?)
[    2.501830] 0104           65536 ram4 
[    2.501832]  (driver?)
[    2.507970] 0105           65536 ram5 
[    2.507972]  (driver?)
[    2.514109] 0106           65536 ram6 
[    2.514111]  (driver?)
[    2.520236] 0107           65536 ram7 
[    2.520238]  (driver?)
[    2.526375] 0108           65536 ram8 
[    2.526378]  (driver?)
[    2.532502] 0109           65536 ram9 
[    2.532504]  (driver?)
[    2.538642] 010a           65536 ram10 
[    2.538645]  (driver?)
[    2.544868] 010b           65536 ram11 
[    2.544870]  (driver?)
[    2.551083] 010c           65536 ram12 
[    2.551085]  (driver?)
[    2.557309] 010d           65536 ram13 
[    2.557311]  (driver?)
[    2.563533] 010e           65536 ram14 
[    2.563536]  (driver?)
[    2.569748] 010f           65536 ram15 
[    2.569751]  (driver?)
[    2.575982] 1f00             128 mtdblock0 
[    2.575984]  (driver?)
[    2.582546] 1f01             128 mtdblock1 
[    2.582548]  (driver?)
[    2.589122] 1f02             128 mtdblock2 
[    2.589125]  (driver?)
[    2.595704] 1f03             128 mtdblock3 
[    2.595706]  (driver?)
[    2.602266] 1f04             256 mtdblock4 
[    2.602268]  (driver?)
[    2.608841] 1f05            1024 mtdblock5 
[    2.608844]  (driver?)
[    2.615416] 1f06             128 mtdblock6 
[    2.615418]  (driver?)
[    2.621980] 1f07             128 mtdblock7 
[    2.621983]  (driver?)
[    2.628556] 1f08            8192 mtdblock8 
[    2.628559]  (driver?)
[    2.635130] 1f09          219136 mtdblock9 
[    2.635133]  (driver?)
[    2.641695] 1f0a           32768 mtdblock10 
[    2.641697]  (driver?)
[    2.648358] Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0)
[    2.656667] ---[ end Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0) ]---

3. 故障分析与解决

内核日志信息:

[    2.162435] ubi0: attaching mtd9
[    2.166572] ubi0 error: validate_ec_hdr: bad VID header offset 512, expected 2048
[    2.174146] ubi0 error: validate_ec_hdr: bad EC header

结合前面的 NAND 分区日志分析,可以知道,mtd9 对应分区 "NAND.rootfs",所以实在挂载 rootfs 过程中出错了。通过内核导出的出错时的调用栈信息,定位到出错代码路径如下(内核版本为 4.19.94):

kernel_init()
	kernel_init_freeable()
		do_basic_setup()
			do_initcalls()
				...
				do_one_initcall()
					ubi_init()
/* drivers/mtd/ubi/build.c */
static int __init ubi_init(void)
{
	...
	/* Attach MTD devices */
	/* mtd_dev_param[] 和 mtd_devs 的设置过程,见后文的 ubi_mtd_param_parse() 分析 */
	for (i = 0; i < mtd_devs; i++) {
		struct mtd_dev_param *p = &mtd_dev_param[i];
		struct mtd_info *mtd;
  
  		...
  		mtd = open_mtd_device(p->name);
  		...

		mutex_lock(&ubi_devices_mutex);
		err = ubi_attach_mtd_dev(mtd, p->ubi_num,
				p->vid_hdr_offs, p->max_beb_per1024);
		mutex_unlock(&ubi_devices_mutex);
		...
	}
	...
}

int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
		int vid_hdr_offset, int max_beb_per1024)
{
	struct ubi_device *ubi;
	...

	...
	
	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
	
	...
	
	ubi->mtd = mtd;
	ubi->ubi_num = ubi_num;
	ubi->vid_hdr_offset = vid_hdr_offset;
	ubi->autoresize_vol_id = -1;

	...

	err = io_init(ubi, max_beb_per1024);

	...

	err = ubi_attach(ubi, 0);
	...

	/* Make device "available" before it becomes accessible via sysfs */
	ubi_devices[ubi_num] = ubi;

	...
}

static int io_init(struct ubi_device *ubi, int max_beb_per1024)
{
	...
	ubi->peb_size   = ubi->mtd->erasesize;
	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
	ubi->flash_size = ubi->mtd->size;
	...
	ubi->leb_size = ubi->peb_size - ubi->leb_start; /* (2) */
	...
}

/* drivers/mtd/ubi/attach.c */
int ubi_attach(struct ubi_device *ubi, int force_scan)
{
	...
	err = scan_all(ubi, ai, 0);
	...
}

static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
		int start)
{
	...
	for (pnum = start; pnum < ubi->peb_count; pnum++) {
		...
		err = scan_peb(ubi, ai, pnum, false);
		...
	}
	...
}

static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
		int pnum, bool fast)
{
	...
	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
	...
}

/* drivers/mtd/ubi/io.c */
int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
         struct ubi_ec_hdr *ec_hdr, int verbose)
{
	...
	/* And of course validate what has just been read from the media */
	err = validate_ec_hdr(ubi, ec_hdr);
	...
}	

static int validate_ec_hdr(const struct ubi_device *ubi,
		const struct ubi_ec_hdr *ec_hdr)		
{
	...
	int vid_hdr_offset, leb_start;
	
	...
	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
	...

	/* (1) */
	if (vid_hdr_offset != ubi->vid_hdr_offset) {
		ubi_err(ubi, "bad VID header offset %d, expected %d",
			vid_hdr_offset, ubi->vid_hdr_offset);
		goto bad;
	}
	
	...
bad:
	ubi_err(ubi, "bad EC header");
	ubi_dump_ec_hdr(ec_hdr);
	dump_stack();
	return 1;
}

问题出在 validate_ec_hdr() 函数位置 (1) 处,由于 vid_hdr_offsetubi->vid_hdr_offset 不相等导致。vid_hdr_offset 来自 ec_hdr->vid_hdr_offset;从上面分析的代码分析,进一步得知 ec_hdr->vid_hdr_offset 来自于 ubi_io_read_ec_hdr() 从设备读取的信息,这个信息是后文提到的 ubinize 工具将 rootfs.ubifs 打包到 rootfs.ubi 镜像是插入的 UBI 卷管理信息。这里暂时不细表,留待后文分析。另外一个信息 ubi->vid_hdr_offset 来自内核命令行参数 ubi.mtd=NAND.rootfs,2048,其赋值的代码流程如下:

start_kernel()
	after_dashes = parse_args("Booting kernel",
			static_command_line, __start___param,
			__stop___param - __start___param,
			-1, -1, NULL, &unknown_bootoption);
		...
		ubi_mtd_param_parse()
/* drivers/mtd/ubi/build.c */
/* 
 * 本文中用来解析 ubi.mtd=NAND.rootfs,2048
 * @val: "NAND.rootfs,2048"
 */
static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
{
	...
	p = &mtd_dev_param[mtd_devs];
 	strcpy(&p->name[0], tokens[0]); /* @p->name: "NAND.rootfs" */

	token = tokens[1];
	if (token) {
		p->vid_hdr_offs = bytes_str_to_int(token); /* @p->vid_hdr_offs: 2048 */
		...
	}

	...
	
	mtd_devs += 1;
	return 0;
}

/*
 * 定义解析 ubi.mtd=XXX 的接口 ubi_mtd_param_parse(), 
 * 如用来解析 ubi.mtd=NAND.rootfs,2048 。
 */
module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);

ubi->vid_hdr_offset 的设置过程在 ubi_init() 调用之前完成。说完了 ubi->vid_hdr_offset 的设置过程,继续看在 UBI 根文件系统 rootfs.ubi 的构建过程中,对 ec_hdr->vid_hdr_offset 等卷(volume)管理信息的填充过程。本文的UBI 根文件系统镜像 rootfs.ubi通过 buildroot 工具构建,其过程简单来讲,就是先通过 mkfs.ubifs 生成一个 rootfs.ubifs 文件,然后再通过工具 ubinizerootfs.ubifs 打包成 UBI 根文件系统镜像 rootfs.ubi

                mkfs.ubifs               ubinize
根文件系统目录树 ----------> rootfs.ubifs --------> rootfs.ubi

mkfs.ubifs 的构建的 rootfs.ubifs 文件,可以理解为根文件系统目录树的打包,是一个文件系统镜像;而 ubinize 工具将 rootfs.ubifs 打包为 UBI 根文件系统镜像 rootfs.ubi 文件时,增加了包含 struct ubi_ec_hdr 头部信息等 UBI 卷管理信息rootfs.ubifs 无法直接作为烧录进设备分区的镜像,只有包含了 UBI 卷管理信息rootfs.ubi 才能烧录进设备分区,作为系统的根文件系统来启动。前面内核日志报错信息:

[    2.166572] ubi0 error: validate_ec_hdr: bad VID header offset 512, expected 2048

问题的根本原因在于:内核命令行参数 ubi.mtd=NAND.rootfs,2048 中的 2048rootfs.ubifs 打包头部信息 struct ubi_ec_hdr::vid_hdr_offset512(ubinize 工具给的默认值) 不匹配造成的。ubinize 工具的 -O 选项可以指定 struct ubi_ec_hdr::vid_hdr_offset 值。从 buildroot 工具 ubinize 打包过程文件 fs/ubifs/ubi.mk 片段:

...
UBI_UBINIZE_OPTS += $(call qstrip,$(BR2_TARGET_ROOTFS_UBI_OPTS))
...
define ROOTFS_UBI_CMD
        sed 's;BR2_ROOTFS_UBIFS_PATH;$@fs;' \
                $(UBINIZE_CONFIG_FILE_PATH) > $(BUILD_DIR)/ubinize.cfg
        $(HOST_DIR)/usr/sbin/ubinize -o $@ $(UBI_UBINIZE_OPTS) $(BUILD_DIR)/ubinize.cfg
        rm $(BUILD_DIR)/ubinize.cfg
endef

得知可以通过 BR2_TARGET_ROOTFS_UBI_OPTS 配置给 ubinize 工具传递参数,运行 make menuconfig ,按如下修改 buildroot 配置 BR2_TARGET_ROOTFS_UBI_OPTS,给 ubinize 工具传递 -O 1024 参数,修改 打包头部信息 struct ubi_ec_hdr::vid_hdr_offset 值为 1024
在这里插入图片描述
重新编译生成 rootfs.ubi,烧录并启动运行,看问题是否解决了:

[    2.162404] ubi0: attaching mtd9
[    2.817587] ubi0: scanning is finished
[    2.841285] ubi0: volume 0 ("rootfs") re-sized from 83 to 1668 LEBs
[    2.848341] ubi0: attached mtd9 (name "NAND.rootfs", size 214 MiB)
[    2.854613] ubi0: PEB size: 131072 bytes (128 KiB), LEB size: 126976 bytes
[    2.861516] ubi0: min./max. I/O unit sizes: 2048/2048, sub-page size 512
[    2.868259] ubi0: VID header offset: 2048 (aligned 2048), data offset: 4096
[    2.875260] ubi0: good PEBs: 1711, bad PEBs: 1, corrupted PEBs: 0
[    2.881377] ubi0: user volume: 1, internal volumes: 1, max. volumes count: 128
[    2.888641] ubi0: max/mean erase counter: 1/0, WL threshold: 4096, image sequence number: 425578287
[    2.897735] ubi0: available PEBs: 0, total reserved PEBs: 1711, PEBs reserved for bad PEB handling: 39
[    2.907100] ubi0: background thread "ubi_bgt0d" started, PID 65
......
[    2.965365] UBIFS error (ubi0:0 pid 1): ubifs_read_superblock: LEB size mismatch: 129024 in superblock, 126976 real
[    2.992980] UBIFS error (ubi0:0 pid 1): ubifs_read_superblock: bad superblock, error 1
[    3.000933]  magic          0x6101831
[    3.004623]  crc            0x3375ce2d
[    3.008386]  node_type      6 (superblock node)
[    3.012931]  group_type     0 (no node group)
[    3.017314]  sqnum          1
[    3.020289]  len            4096
[    3.023537]  key_hash       0 (R5)
[    3.026950]  key_fmt        0 (simple)
[    3.030709]  flags          0x0
[    3.033870]  big_lpt        0
[    3.036845]  space_fixup    0
[    3.039818]  min_io_size    2048
[    3.043063]  leb_size       129024
[    3.046474]  leb_cnt        1668
[    3.049709]  max_leb_cnt    2048
[    3.052956]  max_bud_bytes  8388608
[    3.056454]  log_lebs       5
[    3.059429]  lpt_lebs       2
[    3.062403]  orph_lebs      1
[    3.065387]  jhead_cnt      1
[    3.068362]  fanout         8
[    3.071335]  lsave_cnt      256
[    3.074495]  default_compr  0
[    3.077470]  rp_size        0
[    3.080443]  rp_uid         0
[    3.083427]  rp_gid         0
[    3.086402]  fmt_version    4
[    3.089378]  time_gran      1000000000
[    3.093151]  UUID           9FC73AE3-A0BA-41C8-8615-2B75694BB8CD
[    3.204172] UBIFS error (ubi0:0 pid 1): ubifs_read_superblock: LEB size mismatch: 129024 in superblock, 126976 real
[    3.222987] UBIFS error (ubi0:0 pid 1): ubifs_read_superblock: bad superblock, error 1
[    3.230940]  magic          0x6101831
[    3.234647]  crc            0x3375ce2d
[    3.238408]  node_type      6 (superblock node)
[    3.242993]  group_type     0 (no node group)
[    3.247364]  sqnum          1
[    3.250338]  len            4096
[    3.253591]  key_hash       0 (R5)
[    3.257003]  key_fmt        0 (simple)
[    3.260762]  flags          0x0
[    3.263923]  big_lpt        0
[    3.266897]  space_fixup    0
[    3.269872]  min_io_size    2048
[    3.273117]  leb_size       129024
[    3.276528]  leb_cnt        1668
[    3.279765]  max_leb_cnt    2048
[    3.283011]  max_bud_bytes  8388608
[    3.286509]  log_lebs       5
[    3.289484]  lpt_lebs       2
[    3.292458]  orph_lebs      1
[    3.295441]  jhead_cnt      1
[    3.298417]  fanout         8
[    3.301390]  lsave_cnt      256
[    3.304548]  default_compr  0
[    3.307522]  rp_size        0
[    3.310496]  rp_uid         0
[    3.313479]  rp_gid         0
[    3.316454]  fmt_version    4
[    3.319429]  time_gran      1000000000
[    3.323199]  UUID           9FC73AE3-A0BA-41C8-8615-2B75694BB8CD
[    3.433193] List of all partitions:
[    3.436713] 0100           65536 ram0 
[    3.436716]  (driver?)
[    3.442843] 0101           65536 ram1 
[    3.442845]  (driver?)
[    3.463000] 0102           65536 ram2 
[    3.463004]  (driver?)
[    3.469132] 0103           65536 ram3 
[    3.469135]  (driver?)
[    3.492961] 0104           65536 ram4 
[    3.492964]  (driver?)
[    3.499093] 0105           65536 ram5 
[    3.499095]  (driver?)
[    3.512959] 0106           65536 ram6 
[    3.512961]  (driver?)
[    3.519087] 0107           65536 ram7 
[    3.519090]  (driver?)
[    3.542960] 0108           65536 ram8 
[    3.542962]  (driver?)
[    3.549089] 0109           65536 ram9 
[    3.549091]  (driver?)
[    3.562956] 010a           65536 ram10 
[    3.562959]  (driver?)
[    3.569173] 010b           65536 ram11 
[    3.569175]  (driver?)
[    3.582961] 010c           65536 ram12 
[    3.582964]  (driver?)
[    3.589178] 010d           65536 ram13 
[    3.589180]  (driver?)
[    3.612959] 010e           65536 ram14 
[    3.612961]  (driver?)
[    3.619175] 010f           65536 ram15 
[    3.619177]  (driver?)
[    3.632970] 1f00             128 mtdblock0 
[    3.632974]  (driver?)
[    3.639537] 1f01             128 mtdblock1 
[    3.639540]  (driver?)
[    3.662959] 1f02             128 mtdblock2 
[    3.662962]  (driver?)
[    3.669524] 1f03             128 mtdblock3 
[    3.669527]  (driver?)
[    3.682960] 1f04             256 mtdblock4 
[    3.682963]  (driver?)
[    3.689526] 1f05            1024 mtdblock5 
[    3.689529]  (driver?)
[    3.712959] 1f06             128 mtdblock6 
[    3.712962]  (driver?)
[    3.719526] 1f07             128 mtdblock7 
[    3.719528]  (driver?)
[    3.732960] 1f08            8192 mtdblock8 
[    3.732963]  (driver?)
[    3.739526] 1f09          219136 mtdblock9 
[    3.739529]  (driver?)
[    3.762959] 1f0a           32768 mtdblock10 
[    3.762962]  (driver?)
[    3.769608] No filesystem could mount root, tried: 
[    3.769610]  ubifs
[    3.782955] 
[    3.786470] Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0)
[    3.794779] ---[ end Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0) ]---

从内核日志看到,之前的问题没有了,但又有了新的问题。根据内核日志,分析下代码流程(对代码细节不感兴趣的读者,可以直接跳过):

/* 1. 解析内核命令行参数: root=ubi0:rootfs rw rootfstype=ubifs rootwait=1 */
start_kernel()
	after_dashes = parse_args("Booting kernel",
			static_command_line, __start___param,
			__stop___param - __start___param,
			-1, -1, NULL, &unknown_bootoption);
		...
		unknown_bootoption()
			obsolete_checksetup(param)
				p->setup_func(line + n) = root_dev_setup(), rootwait_setup(), fs_names_setup()

/* init/do_mounts.c */
int root_mountflags = MS_RDONLY | MS_SILENT;

static int __init readwrite(char *str)
{
	if (*str)
		return 0;
	root_mountflags &= ~MS_RDONLY; /* @root_mountflags: MS_SILENT */
	return 1;
}

__setup("rw", readwrite);

static int __init root_dev_setup(char *line)
{
	/* @saved_root_name: "ubi0:rootfs" */
	strlcpy(saved_root_name, line, sizeof(saved_root_name));
	return 1;
}

__setup("root=", root_dev_setup);

static int __init rootwait_setup(char *str)
{
	if (*str)
		return 0;
	root_wait = 1; /* @root_wait: 1 */
	return 1;
}

__setup("rootwait", rootwait_setup);

static char * __initdata root_fs_names;
static int __init fs_names_setup(char *str)
{
	root_fs_names = str; /* @root_fs_names: "ubifs" */
	return 1;
}

__setup("rootfstype=", fs_names_setup);
start_kernel()
	rest_init()
		pid = kernel_thread(kernel_init, NULL, CLONE_FS); /* 启动初始化线程 */

kernel_init()
	kernel_init_freeable()
		prepare_namespace()

/* init/do_mounts.c */
void __init prepare_namespace(void)
{
	if (saved_root_name[0]) { /* @saved_root_name: "ubi0:rootfs" */
		root_device_name = saved_root_name;
		if (!strncmp(root_device_name, "mtd", 3) ||
		    !strncmp(root_device_name, "ubi", 3)) {
			mount_block_root(root_device_name, root_mountflags); /* 挂载 rootfs */
			goto out;
		}
	}
	
	...

out:
	devtmpfs_mount("dev");
	ksys_mount(".", "/", NULL, MS_MOVE, NULL);
	ksys_chroot(".");
}

/* 挂载 rootfs */
void __init mount_block_root(char *name, int flags)
{
	...
	for (p = fs_names; *p; p += strlen(p)+1) {
		int err = do_mount_root(name, p, flags, root_mount_data);
		switch (err) {
		case 0:
			goto out; /* 成功挂载 rootfs */
		case -EACCES:
		case -EINVAL:
			continue;
		}
	}
	...

out:
	...
}

/* 
 * @name : "ubi0:rootfs" 
 * @fs   : "ubifs"
 * @flags: MS_SILENT
 * @data : NULL
 */
static int __init do_mount_root(char *name, char *fs, int flags, void *data)
{
	struct super_block *s;
 	int err = ksys_mount(name, "/root", fs, flags, data);
	...
}

/* fs/namespace.c */
int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
		unsigned long flags, void __user *data)
{
	...
	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
	...
}

long do_mount(const char *dev_name, const char __user *dir_name,
		const char *type_page, unsigned long flags, void *data_page)
{
	...
	if (flags & MS_REMOUNT)
		retval = do_remount(...);
	else if (flags & MS_BIND)
		retval = do_loopback(...);
	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
		retval = do_change_type(...);
	else if (flags & MS_MOVE)
		retval = do_move_mount(...);
	else
		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
				dev_name, data_page);
	...
}

static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
		int mnt_flags, const char *name, void *data)
{
	struct file_system_type *type;
	struct vfsmount *mnt;
 
	...
	type = get_fs_type(fstype); /* @type: &ubifs_fs_type */
	...

	mnt = vfs_kern_mount(type, sb_flags, name, data);
	...

	put_filesystem(type);
	...
}

struct vfsmount *
vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
{
	struct mount *mnt;
	struct dentry *root;

	...
	
	mnt = alloc_vfsmnt(name);
	...

	root = mount_fs(type, flags, name, data);

	mnt->mnt.mnt_root = root;
	mnt->mnt.mnt_sb = root->d_sb;
	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
	mnt->mnt_parent = mnt;
	lock_mount_hash();
	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
	unlock_mount_hash();
	return &mnt->mnt;
}

/* fs/super.c */
struct dentry *
mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
{
	struct dentry *root;
	struct super_block *sb;
	...

	...
	root = type->mount(type, flags, name, data); /* ubifs_mount() */
	...
	sb = root->d_sb;
	...

	return root;
	...
}
/* fs/ubifs/super.c */

static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
		const char *name, void *data)
{
	struct ubi_volume_desc *ubi;
	struct ubifs_info *c;
	struct super_block *sb;
 	...

	/*
	 * Get UBI device number and volume ID. Mount it read-only so far
	 * because this might be a new mount point, and UBI allows only one
	 * read-write user at a time.
	 */
	ubi = open_ubi(name, UBI_READONLY);
	...

	c = alloc_ubifs_info(ubi);
	...

	sb = sget(fs_type, sb_test, sb_set, flags, c);
	...

	if (sb->s_root) {
		...
	} else {
		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
		...
	}

	/* 'fill_super()' opens ubi again so we must close it here */
	ubi_close_volume(ubi);

	return dget(sb->s_root);
	
	...
}

static struct ubi_volume_desc *open_ubi(const char *name, int mode)
{
	struct ubi_volume_desc *ubi;
	...

	...

	/* First, try to open using the device node path method */
	ubi = ubi_open_volume_path(name, mode);
	
	...
}

struct ubi_volume_desc *ubi_open_volume_path(const char *pathname, int mode)
{
	...
	if (vol_id >= 0 && ubi_num >= 0)
		return ubi_open_volume(ubi_num, vol_id, mode);
	...
}

struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode)
{
	...
	/*
	 * First of all, we have to get the UBI device to prevent its removal.
	 */
	ubi = ubi_get_device(ubi_num);
	...

	desc = kmalloc(sizeof(struct ubi_volume_desc), GFP_KERNEL);
	...

	spin_lock(&ubi->volumes_lock);
	vol = ubi->volumes[vol_id]; /* (3) */
	...
	spin_unlock(&ubi->volumes_lock);
	
	desc->vol = vol;
	...

	return desc;
}

struct ubi_device *ubi_get_device(int ubi_num)
{
	struct ubi_device *ubi;
	
	...
	ubi = ubi_devices[ubi_num]; /* ubi_devices[] 在前一问题代码分析中的 ubi_attach_mtd_dev() 构建 */
	...

	return ubi;
}

static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
{
	struct ubifs_info *c;

	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
	if (c) {
		...
		ubi_get_volume_info(ubi, &c->vi);
		...
	}
}

void ubi_get_volume_info(struct ubi_volume_desc *desc,
			struct ubi_volume_info *vi)
{
	ubi_do_get_volume_info(desc->vol->ubi, desc->vol, vi);
}

void ubi_do_get_volume_info(struct ubi_device *ubi, struct ubi_volume *vol,
			struct ubi_volume_info *vi)
{
	...
	vi->usable_leb_size = vol->usable_leb_size;
	...
}

static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
{
	...
	err = mount_ubifs(c);
	...
}

static int mount_ubifs(struct ubifs_info *c)
{
	...
	err = init_constants_early(c);
	...
	err = ubifs_read_superblock(c);
	...
}

static int init_constants_early(struct ubifs_info *c)
{
	...
	c->leb_size = c->vi.usable_leb_size;
	...
}

int ubifs_read_superblock(struct ubifs_info *c)
{
	...
	struct ubifs_sb_node *sup;

	...
	sup = ubifs_read_sb_node(c); /* 从写入到设备的 rootfs 镜像读取 superblock 信息 */
	
	...

	err = validate_sb(c, sup); /* 验证 rootfs 构建的 superblock 的合法性 */
	...
}

static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
{
	...

	if (le32_to_cpu(sup->leb_size) != c->leb_size) { /* (4) 内核报错日志 */
		ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
			le32_to_cpu(sup->leb_size), c->leb_size);
		goto failed;
	}

	...

failed:
	ubifs_err(c, "bad superblock, error %d", err);
	ubifs_dump_node(c, sup);
	return -EINVAL;
}

这个路径虽然很长,但并不复杂,在代码流程最后 validate_sb() 函数中的 (4) 处,内核报错。和前面的问题类似,又是一个 rootfs 镜像 rootfs.ubi 的参数 和 硬件参数 不匹配的问题,即 buildroot 中对应参数的配置问题。从前面的 open_ubi()alloc_ubifs_info() 代码流程分析得知,参数 c->leb_size 反应 NAND 硬件参数,而 sup->leb_size 参数值来自 rootfs.ubi 。从 buildrootfs/ubifs/ubifs.mk 的片段:

# -e 参数指定 LEB(Logical Erase Block) 的大小
UBIFS_OPTS := -e $(BR2_TARGET_ROOTFS_UBIFS_LEBSIZE) -c $(BR2_TARGET_ROOTFS_UBIFS_MAXLEBCNT) -m $(BR2_TARGET_ROOTFS_UBIFS_MINIOSIZE)

...

define ROOTFS_UBIFS_CMD
        $(HOST_DIR)/usr/sbin/mkfs.ubifs -d $(TARGET_DIR) $(UBIFS_OPTS) -o $@
endef

我们得知,ubinize-e 选项用配置项 BR2_TARGET_ROOTFS_UBIFS_LEBSIZE 修改 LEB(Logical Erase Block) 值,按日志提示:

[    2.965365] UBIFS error (ubi0:0 pid 1): ubifs_read_superblock: LEB size mismatch: 129024 in superblock, 126976 real

该值应该由 129024(0x1f800) 修改为 126976(0x1f000)
在这里插入图片描述重新编译,烧录运行,终于可以进入登录提示处了:

[    2.162228] ubi0: attaching mtd9
[    2.817396] ubi0: scanning is finished
[    2.841103] ubi0: volume 0 ("rootfs") re-sized from 83 to 1668 LEBs
[    2.848156] ubi0: attached mtd9 (name "NAND.rootfs", size 214 MiB)
[    2.854435] ubi0: PEB size: 131072 bytes (128 KiB), LEB size: 126976 bytes
[    2.861339] ubi0: min./max. I/O unit sizes: 2048/2048, sub-page size 512
[    2.868081] ubi0: VID header offset: 2048 (aligned 2048), data offset: 4096
[    2.875082] ubi0: good PEBs: 1711, bad PEBs: 1, corrupted PEBs: 0
[    2.881199] ubi0: user volume: 1, internal volumes: 1, max. volumes count: 128
[    2.888463] ubi0: max/mean erase counter: 1/0, WL threshold: 4096, image sequence number: 1890895802
[    2.897644] ubi0: available PEBs: 0, total reserved PEBs: 1711, PEBs reserved for bad PEB handling: 39
[    2.907010] ubi0: background thread "ubi_bgt0d" started, PID 65
......
[    2.972922] UBIFS (ubi0:0): background thread "ubifs_bgt0_0" started, PID 66
[    3.083296] UBIFS (ubi0:0): UBIFS: mounted UBI device 0, volume 0, name "rootfs"
[    3.090747] UBIFS (ubi0:0): LEB size: 126976 bytes (124 KiB), min./max. I/O unit sizes: 2048 bytes/2048 bytes
[    3.122798] UBIFS (ubi0:0): FS size: 210399232 bytes (200 MiB, 1657 LEBs), journal size 9023488 bytes (8 MiB, 72 LEBs)
[    3.142800] UBIFS (ubi0:0): reserved for root: 0 bytes (0 KiB)
[    3.148663] UBIFS (ubi0:0): media format: w4/r0 (latest is w5/r0), UUID 7A19D54A-3848-4AFB-8DDF-4E4A6B04D4FC, small LPT model
[    3.184943] VFS: Mounted root (ubifs filesystem) on device 0:14.
[    3.192113] devtmpfs: mounted
...
[    3.555581] omap2-nand 8000000.nand: uncorrectable bit-flips found
[    3.572853] ubi0 warning: ubi_io_read: error -74 (ECC error) while reading 61 bytes from PEB 82:6144, read only 61 bytes, retry
...
Welcome
(none) login: 

虽然从日志 uncorrectable bit-flips found 可以看出,仍然还存在 ECC 报错的问题,但前面的两个问题都已经修正,而且也成功的进入系统登录界面。对于 ECC 报错的问题,在另一篇博文 Linux: ubi rootfs 故障案例 (2) 展开。

4. 参考资料

[1] https://bootlin.com/blog/creating-flashing-ubi-ubifs-images/
[2] UBI FAQ and HOWTO
[3] UBI - Unsorted Block Images

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1802776.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数据结构与算法 | 二叉树篇】力扣101, 104, 111,LCR144

1. 力扣101 : 对称二叉树 (1). 题 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true示例 2&#xff1a; 输入&#xff1a;root [1,2,2,null,3,null,3] 输出&#xff1a;false…

Go语言 几种常见的IO模型用法 和 netpoll与原生GoNet对比

【go基础】16.I/O模型与网络轮询器netpoller_go中的多路io复用模型-CSDN博客 字节开源的netPoll多路复用器源码解析-CSDN博客 一、几种常见的IO模型 1. 阻塞I/O (1) 解释&#xff1a; 用户调用如accept、read等系统调用&#xff0c;向内核发起I/O请求后&#xff0c;应用程序…

多样本上下文学习:开拓大模型的新领域

大模型&#xff08;LLMs&#xff09;在少量样本上下文学习&#xff08;ICL&#xff09;中展现出了卓越的能力&#xff0c;即通过在推理过程中提供少量输入输出示例来学习&#xff0c;而无需更新权重。随着上下文窗口的扩展&#xff0c;我们现在可以探索包含数百甚至数千个示例的…

基于JSP技术的文物管理系统

你好呀&#xff0c;我是计算机学长猫哥&#xff01;如果有相关需求&#xff0c;文末可以找到我的联系方式。 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;JSP技术 工具&#xff1a;IDEA/Eclipse、Navicat、Maven 系统展示 首页 管理员界面 用户前台…

步态控制之ZMP

零力矩点&#xff08;Zero Moment Point&#xff0c;ZMP&#xff09;概述 ZMP步态控制是人形机器人步态控制中的一个关键概念&#xff0c;旨在确保机器人在行走或站立过程中保持平衡。ZMP是指机器人接触面上力矩为零的点&#xff0c;确保在该点上机器人不会倾倒。这个示例展示…

Python的登录注册界面跳转汽车主页面

1.登录注册界面的代码&#xff1a; import tkinter as tk from tkinter import messagebox,ttk from tkinter import simpledialog from ui.car_ui import start_car_ui# 设置主题风格 style ttk.Style() style.theme_use("default") # 可以根据需要选择不同的主题…

竞拍商城系统源码后端PHP+前端UNIAPP

下载地址&#xff1a;竞拍商城系统源码后端PHP前端UNIAPP

Live800:深度解析,客户服务如何塑造品牌形象

在当今竞争激烈的市场环境中&#xff0c;品牌形象对于企业的成功至关重要。而客户服务作为品牌与消费者之间最直接的互动方式&#xff0c;不仅影响着消费者的购买决策&#xff0c;更在塑造品牌形象方面发挥着不可替代的作用。本文将深度解析客户服务如何塑造品牌形象&#xff0…

1074 宇宙无敌加法器(测试点5)

solution 每位权值不同的高精度加法测试点5&#xff1a;结果为0的情况 #include<iostream> #include<string> using namespace std; int main(){string rule, a, b, ans "";int carry 0, temp, cnt, power;cin >> rule >> a >> b;…

【Python】FastAPI返回不带双引号的字符串

昨天为获取代理ip写的一个接口&#xff0c;但返回的数据是带有双引号&#xff0c;终究不适合一些应用场景&#xff0c;带引号的是这样的&#xff1a; 说实在话&#xff0c;一时我也愣住了&#xff0c;竟然不知道要咋去掉这个双引号。因为是api接口&#xff0c;直接显示结果&…

HW面试常见知识点2——研判分析(蓝队中级版)

&#x1f340;文章简介&#xff1a;又到了一年一度的HW时刻&#xff0c;本文写给新手想快速进阶HW蓝中的网安爱好者们&#xff0c; 通读熟练掌握本文面试定个蓝中还是没问题的&#xff01;大家也要灵活随机应变&#xff0c;不要太刻板的回答&#xff09; &#x1f341;个人主页…

计算机网络 期末复习(谢希仁版本)第8章

元文件就是一种非常小的文件&#xff0c;它描述或指明其他文件的一些重要信息。这里的元文件保存了有关这个音频/视频文件的信息。 10. 流式&#xff1a;TCP&#xff1b;流式实况&#xff1a;UDP。

零基础入门学用Arduino 第二部分(一)

重要的内容写在前面&#xff1a; 该系列是以up主太极创客的零基础入门学用Arduino教程为基础制作的学习笔记。个人把这个教程学完之后&#xff0c;整体感觉是很好的&#xff0c;如果有条件的可以先学习一些相关课程&#xff0c;学起来会更加轻松&#xff0c;相关课程有数字电路…

在windows下使用本地AI模型提供翻译、对话、文生图服务

文章目录 在windows下使用本地AI模型提供翻译、对话、文生图服务ollama简介下载安装配置环境变量模型安装目录服务监听地址跨域配置我的配置注意事项 开机自启 使用运行模型对话时的命令 查看本地已安装模型删除模型 查看ollama支持的模型 Docker Desktop简介下载安装配置开机自…

Linux驱动应用编程(四)IIC(获取BMP180温度/压力数据)

本文目录 一、基础1. 查看开发板手册&#xff0c;获取可用IIC总线2. 挂载从机&#xff0c;查看从机地址。3. 查看BMP180手册&#xff0c;使用命令读/写某寄存器值。4. 查看BMP180手册通信流程。 二、IIC常用API1. iic数据包/报2. ioctl函数 三、数据包如何被处理四、代码编写流…

(2024,Vision-LSTM,ViL,xLSTM,ViT,ViM,双向扫描)xLSTM 作为通用视觉骨干

Vision-LSTM: xLSTM as Generic Vision Backbone 公和众与号&#xff1a;EDPJ&#xff08;进 Q 交流群&#xff1a;922230617 或加 VX&#xff1a;CV_EDPJ 进 V 交流群&#xff09; 目录 0. 摘要 2 方法 3 实验 3.1 分类设计 4 结论 0. 摘要 Transformer 被广泛用作计算…

FM148R,FM147A和利时卡件

FM148R,FM147A和利时卡件。软件组成及各部分功能软件组成---各组件功能注意事项&#xff1a;仿真功能&#xff1a;仿真系统可以用于在单机上对组态完成的工程内容进行模拟运行。FM148R,FM147A和利时卡件。便于对这些组态内容的正确性和合理性进行初步调试。二、FM148R,FM147A和…

【Vue】面经基础版-案例效果分析

面经效果演示 功能分析 通过演示效果发现&#xff0c;主要的功能页面有两个&#xff0c;一个是列表页&#xff0c;一个是详情页&#xff0c;并且在列表页点击时可以跳转到详情页底部导航可以来回切换&#xff0c;并且切换时&#xff0c;只有上面的主题内容在动态渲染 实现思路…

C++基础四:C++模板编程

目录 一:函数模板 二:类模板 空间配置器allocator 一:函数模板 模板代码只能同一实现,不能先声明,再在另一文件实现,模板代码都是放在头文件当中的,在头文件中直接实现 二:类模板 template<typename T=int> class SeqStack // 模板名称+类型参数列表 = 类名称…

8.3 Go 包的组织结构

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…