在windows下使用本地AI模型提供翻译、对话、文生图服务

news2024/11/28 0:56:16

文章目录

  • 在windows下使用本地AI模型提供翻译、对话、文生图服务
    • ollama
      • 简介
      • 下载
      • 安装
      • 配置
        • 环境变量
          • 模型安装目录
          • 服务监听地址
          • 跨域配置
          • 我的配置
          • 注意事项
        • 开机自启
      • 使用
          • 运行模型
            • 对话时的命令
          • 查看本地已安装模型
          • 删除模型
      • 查看ollama支持的模型
    • Docker Desktop
      • 简介
      • 下载
      • 安装
      • 配置
        • 开机自启
    • Open WebUI
      • 简介
      • 部署
      • 配置
        • 设置为中文
        • 配置模型为ollama
      • 对话测试
    • continue插件
      • 简介
      • 安装
      • 配置
      • 使用
    • openai-translator
      • 简介
      • 下载与安装
      • 配置
      • 划词翻译
    • 沉浸式翻译
      • 简介
      • 安装
      • 配置
      • 使用
    • ComfyUI
      • 简介
      • 安装
      • 使用
        • 下载模型
        • 运行
        • 配置Open Webui使用Comfy UI文生图

在windows下使用本地AI模型提供翻译、对话、文生图服务

我的机器配置如下:

处理器:AMD Ryzen 7 8845H w/ Radeon 780M Graphics 3.80 GHz

内存: 32G

GPU: 4060 8G

实测跑8-10G模型只能开一个会话,所以我一般选择跑4G左右的模型。

ollama

简介

官网地址:Ollama

Ollluma全面兼容MacOS、Linux和Windows系统,它提供简洁的一键式本地模型部署流程,并将API功能统一转换至与OpenAI相匹配的标准格式,旨在为您带来无缝且高效的使用体验。

下载

Download Ollama on Windows

安装

详细安装步骤省略,双击exe程序,即可装好。

安装完之后,最小化图标可以看到ollama,image-20240608160137493

在浏览器输入地址localhost:11434,即可看到下面输出:

Ollama is running

至此,安装流程已全部顺利完成。

配置

环境变量
OLLAMA_DEBUG               Show additional debug information (e.g. OLLAMA_DEBUG=1)
OLLAMA_HOST                IP Address for the ollama server (default 127.0.0.1:11434)
OLLAMA_KEEP_ALIVE          The duration that models stay loaded in memory (default "5m")
OLLAMA_MAX_LOADED_MODELS   Maximum number of loaded models (default 1)
OLLAMA_MAX_QUEUE           Maximum number of queued requests
OLLAMA_MODELS              The path to the models directory
OLLAMA_NUM_PARALLEL        Maximum number of parallel requests (default 1)
OLLAMA_NOPRUNE             Do not prune model blobs on startup
OLLAMA_ORIGINS             A comma separated list of allowed origins
OLLAMA_TMPDIR              Location for temporary files
OLLAMA_FLASH_ATTENTION     Enabled flash attention
OLLAMA_LLM_LIBRARY         Set LLM library to bypass autodetection
OLLAMA_MAX_VRAM            Maximum VRAM

OLLAMA_DEBUG 				显示额外的调试信息(例如:OLLAMA_DEBUG=1)
OLLAMA_HOST 				ollama服务器的IP地址(默认 127.0.0.1:11434)
OLLAMA_KEEP_ALIVE 			模型在内存中加载的持续时间(默认 "5m")
OLLAMA_MAX_LOADED_MODELS 	加载的最大模型数量(默认为1)
OLLAMA_MAX_QUEUE 			队列中的最大请求数
OLLAMA_MODELS 				模型目录的路径
OLLAMA_NUM_PARALLEL 		并行请求的最大数量(默认为1)
OLLAMA_NOPRUNE 				不在启动时清除模型块
OLLAMA_ORIGINS 				允许源头的逗号分隔列表
OLLAMA_TMPDIR 				临时文件的位置
OLLAMA_FLASH_ATTENTION 		启用闪速注意力
OLLAMA_LLM_LIBRARY 			设置LLM库以绕过自动检测
OLLAMA_MAX_VRAM 			最大VRAM
模型安装目录

默认是会安装到C盘,但是模型一般都很大,所以我选择安装到其他盘,只需要设置OLLAMA_MODELS变量为你想要安装的目录即可。

服务监听地址

默认是监听localhost:1143,如果需要局域网其他设备访问可以设置OLLAMA_HOST为0.0.0.0,如果需要更改默认端口,可以设置为0.0.0.0:12345。

跨域配置

如果有一些特殊需求,例如想让浏览器插件可以访问本地的ollama,正常操作时会报跨域错误,所以需要设置OLLAMA_ORIGINS为*

我的配置

image-20240608161255386

ollama提供了很多配置项,按需配置即可。

注意事项

设置完环境变量后需要重启ollama服务,才会生效。

可以在最小化右键ollama图标,点击选择退出,然后在开始菜单中找到ollama,双击运行。

开机自启

把ollama设置为开机自启,这样每次开机时就不需要手动运行ollama了,做到无感使用。

使用

打开cmd,输入ollama -h即可看到下面帮助信息。

ollama -h
Large language model runner

Usage:
  ollama [flags]
  ollama [command]

Available Commands:
  serve       Start ollama
  create      Create a model from a Modelfile
  show        Show information for a model
  run         Run a model
  pull        Pull a model from a registry
  push        Push a model to a registry
  list        List models
  ps          List running models
  cp          Copy a model
  rm          Remove a model
  help        Help about any command

Flags:
  -h, --help      help for ollama
  -v, --version   Show version information

Use "ollama [command] --help" for more information about a command.



大型语言模型运行工具


使用方法:
ollama [标志]
ollama [命令]


可选命令列表:
serve 		启动 ollama
create 		根据 Modelfile 创建模型
show 		展示模型信息
run 		运行模型
pull 		从注册表下载模型
push 		将模型推送到注册表
list 		列出所有模型
ps 			列出正在运行的模型
cp 			复制模型
rm 			删除模型
help 		获取任何命令的帮助信息


对于每个命令获取更多信息,请使用 "ollama [command] --help"

可能每个版本支持的环境变量不一样,所以可以输入ollama serve -h查看帮助信息。

ollama serve -h
Start ollama

Usage:
  ollama serve [flags]

Aliases:
  serve, start

Flags:
  -h, --help   help for serve

Environment Variables:
      OLLAMA_DEBUG               Show additional debug information (e.g. OLLAMA_DEBUG=1)
      OLLAMA_HOST                IP Address for the ollama server (default 127.0.0.1:11434)
      OLLAMA_KEEP_ALIVE          The duration that models stay loaded in memory (default "5m")
      OLLAMA_MAX_LOADED_MODELS   Maximum number of loaded models (default 1)
      OLLAMA_MAX_QUEUE           Maximum number of queued requests
      OLLAMA_MODELS              The path to the models directory
      OLLAMA_NUM_PARALLEL        Maximum number of parallel requests (default 1)
      OLLAMA_NOPRUNE             Do not prune model blobs on startup
      OLLAMA_ORIGINS             A comma separated list of allowed origins
      OLLAMA_TMPDIR              Location for temporary files
      OLLAMA_FLASH_ATTENTION     Enabled flash attention
      OLLAMA_LLM_LIBRARY         Set LLM library to bypass autodetection
      OLLAMA_MAX_VRAM            Maximum VRAM
      
      
启动 ollama


使用方法:
ollama serve [标志]


别名:
serve, start


标志:
-h, --help 获取关于 serve 命令的帮助信息


环境变量:
OLLAMA_DEBUG 				显示额外的调试信息(例如,设置 OLLAMA_DEBUG=1)
OLLAMA_HOST 				ollama服务器使用的IP地址(默认为127.0.0.1:11434)
OLLAMA_KEEP_ALIVE 			模型在内存中加载后的保留时长(默认为"5分钟")
OLLAMA_MAX_LOADED_MODELS 	最多可以加载的模型数量(默认为1个)
OLLAMA_MAX_QUEUE 			接收请求的最大队列数
OLLAMA_MODELS 				模型目录的位置
OLLAMA_NUM_PARALLEL 		并发处理请求的最大数量(默认为1)
OLLAMA_NOPRUNE 				在启动时不清理模型快照
OLLAMA_ORIGINS 				允许的源地址列表,以逗号分隔
OLLAMA_TMPDIR 				临时文件的位置
OLLAMA_FLASH_ATTENTION 		启用闪速注意力
OLLAMA_LLM_LIBRARY 			设置 LLM 库以绕过自动检测(需提供具体库名)
OLLAMA_MAX_VRAM 			最大VRAM使用量
运行模型

这里以qwen2模型为例,演示如何使用ollama运行模型。执行命令ollama run qwen2:7b,如果本地有模型则会直接启动一个会话,如果本地没有模型,则会自动去服务器下载模型,如果模型有更新,也会自动更新。

注:ollama有个优点就是可以裸网络全速下载,不需要科学。不像LM-Studio,不用魔法下载不了模型。

1717834761013

对话测试:

image-20240608162505207

对话时的命令
/?
Available Commands:
  /set            Set session variables
  /show           Show model information
  /load <model>   Load a session or model
  /save <model>   Save your current session
  /clear          Clear session context
  /bye            Exit
  /?, /help       Help for a command
  /? shortcuts    Help for keyboard shortcuts

Use """ to begin a multi-line message.


可选命令如下:



/set:用于设置会话变量。

/show:展示模型信息。

/load <model>:加载一个会话或模型,其中 <model> 需要替换为具体的模型名称或ID。

/save <model>:保存当前的会话至指定模型。同样, <model> 应该被替换成你想要命名的新模型名称。

/clear:清除会话上下文,使得所有变量和状态都归于初始状态。

/bye 或 /exit:用于退出程序或系统环境。

/? 或 /help:提供对于某一命令的帮助信息。

/? shortcuts: 帮助你了解可用的键盘快捷键。


请使用引号 """ 来开始和结束多行消息,以便于命令解析。

最常用的就是/bye退出会话了。

查看本地已安装模型
ollama list
NAME            ID              SIZE    MODIFIED
qwen2:7b        e0d4e1163c58    4.4 GB  6 hours ago
aya:latest      7ef8c4942023    4.8 GB  7 days ago
openchat:latest 537a4e03b649    4.1 GB  12 days ago
llama3:latest   365c0bd3c000    4.7 GB  12 days ago
删除模型
ollama rm llama3
deleted 'llama3'

查看ollama支持的模型

library (ollama.com)

image-20240608163353767

这里以qwen2为例,讲解一些注意事项。

image-20240608163452931

下面readme有一些模型的介绍。

在这里插入图片描述

模型一般会有多个tag,就类似于github上面有多个分支一样。

同一个模型首先会按参数数量分,如72b、7b、1.5b、0.5b,参数越多的模型越大,需要的算力也就越大。

image-20240608163800965

所以给ollama run qwen2启动的时候可以指定模型tag,例如ollama run qwen2:7b。

选择tag后,右上角会出现运行的命令,直接copy去运行就行了。

Docker Desktop

简介

官网地址:Docker Desktop

Docker Desktop 是一个由 Docker Inc. 开发的桌面应用软件,用于在 Windows、macOS 和 Linux 操作系统上运行本地容器。它提供了一种简单且易于使用的界面来启动和管理 Docker 容器,并提供了对一些常用工具(如 Kubernetes)的支持。

注:这个就需要魔法才能稳定访问。

现在有非常多比较优秀的项目支持openai,所以理论上支持openai的项目就支持ollama。

开源项目一般都会提供docker镜像来简化部署,所以我们就使用docker来跑相关项目。

下载

docker-desktop

安装

安装之前需要开启windows对WSL的支持,如果版本过低,需要手动升级到WSL2。

具体可以参照这篇博客:Windows10上开启WSL2(Windows Subsystem for Linux 2)及Docker Desktop For Windows - TaylorShi - 博客园 (cnblogs.com)

WSL2弄好后,就可以安装docker desktop程序了。

安装完后点击运行启动引擎,它会创建两个WSL虚拟机。

配置

docker desktop使用WSL2运行容器,它自己本身就是两个wsl虚拟机。

wsl --list
适用于 Linux 的 Windows 子系统分发:
docker-desktop(默认)
docker-desktop-data

这个虚拟机默认也是在C盘,因为docker 镜像一般也比较大,所以需要放到其他盘去。

需要先退出docker desktop软件。

导出这两个虚拟机:

wsl --export docker-desktop D:\AI\docker-desktop.tar
wsl --export docker-desktop-data D:\AI\docker-desktop-data.tar

删除两个虚拟机:

wsl --unregister docker-desktop
wsl --unregister docker-desktop-data

导入虚拟机到其他盘:

wsl --import docker-desktop D:\AI\dockerdesktop D:\AI\docker-desktop.tar --version 2
wsl --import docker-desktop-data D:\AI\dockedesktopdata D:\AI\docker-desktop-data.tar --version 2

到此就完成了迁移了。

开机自启

设置开启自启,这样可以无感使用本地AI。

Open WebUI

简介

官网:Open WebUI

帮助文档:🏡 Home | Open WebUI

Open WebUI 是一个可扩展的、功能丰富且用户友好的自托管网络界面,旨在完全离线运行。它支持多种LLM跑批程序,包括Ollama和与OpenAI兼容的应用程序接口(API)。

提供类似于chatgpt网页端对话功能。

部署

打开docker desktop命令运行下面命令:

docker run -d -p 80:8080 --add-host=host.docker.internal:host-gateway -v D:\AI\webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

成功之后访问:

localhost

即可看到登录界面

image-20240608171049749

刚部署,需要点击注册(Sign up),注册一个账号,第一个注册的账号自动获得管理员权限。

配置

image-20240608171406283

点击右下角的Settings进入设置。

设置为中文

image-20240608171536262

配置模型为ollama

URL:http://host.docker.internal:11434

image-20240608171722359

配置好后,就能自动获取到本地已安装的模型了。

image-20240608171913321

对话测试

1717838477736

大功告成,尽情享受。

Open WebUI还支持文生图,后续搭建文生图模型时再介绍如何配置。

continue插件

简介

官网地址:Continue

文档地址:Continue

Continue 允许您在集成开发环境(IDE)中创建自己的AI代码助手。使用开源的VS Code和JetBrains扩展保持您的开发者工作流程畅通无阻。

下面以vscode为例。

安装

Continue - Codestral, GPT-4o, and more - Visual Studio Marketplace

配置

image-20240608172952859

我的配置如下:

{
  "models": [
    {
      "title": "qwen2:7b",
      "provider": "ollama",
      "model": "qwen2:7b",
      "apiBase": "http://localhost:11434"
    },
    {
      "title": "openchat",
      "provider": "ollama",
      "model": "openchat",
      "apiBase": "http://localhost:11434"
    }
  ],
  "customCommands": [
    {
      "name": "test",
      "prompt": "{{{ input }}}\n\nWrite a comprehensive set of unit tests for the selected code. It should setup, run tests that check for correctness including important edge cases, and teardown. Ensure that the tests are complete and sophisticated. Give the tests just as chat output, don't edit any file.",
      "description": "Write unit tests for highlighted code"
    }
  ],
  "tabAutocompleteModel": {
    "title": "qwen2:7b",
    "provider": "ollama",
    "model": "qwen2:7b",
    "apiBase": "http://localhost:11434"
  },
  "allowAnonymousTelemetry": true,
  "embeddingsProvider": {
    "provider": "transformers.js"
  }
}

models对话配置:

title:标题

provider:使用ollama的话就填ollama

model:填模型名称

apiBase:填ollama监听地址

tabAutocompleteModel是代码补全配置,我这里选择使用qwen2做代码补全。

使用

查看官网的使用教程,下面是官网对快捷键的介绍,建议都看一看。

🧑‍🎓 How to use Continue | Continue

openai-translator

简介

官网地址:GitHub - openai-translator/openai-translator: 基于 ChatGPT API 的划词翻译浏览器插件和跨平台桌面端应用 - Browser extension and cross-platform desktop application for translation based on ChatGPT API.

已开发Bob插件bob-plugin-openai-translator,利用ChatGPT API在macOS上实现全局选词翻译。鉴于非macOS用户的需求,特别创建了浏览器插件,以便让他们也能通过ChatGPT进行选词翻译。

  1. 支持三种翻译模式:翻译、润色、总结
  2. 支持 55 种语言的相互翻译、润色和总结功能
  3. 支持实时翻译、润色和总结,以最快的速度响应用户,让翻译、润色和总结的过程达到前所未有的流畅和顺滑
  4. 支持自定义翻译文本
  5. 支持一键复制
  6. 支持 TTS
  7. 有桌面端应用,全平台(Windows + macOS + Linux)支持!
  8. 支持截图翻译
  9. 支持生词本,同时支持基于生词本里的单词生成帮助记忆的内容
  10. 同时支持 OpenAI 和 Azure OpenAI Service

下载与安装

下载地址:Releases · openai-translator/openai-translator · GitHub

下载exe版本即可。OpenAI.Translator_0.4.19_x64-setup.exe

然后直接安装。

配置

image-20240608173926970

划词翻译

参考官方文档:openai-translator/CLIP-EXTENSIONS-CN.md at main · openai-translator/openai-translator · GitHub

image-20240608174219409

沉浸式翻译

简介

官网地址:沉浸式翻译 - 双语对照网页翻译插件 | PDF翻译 | 视频字幕翻译 (immersivetranslate.com)

沉浸式翻译:全网口碑炸裂的双语对照网页翻译插件
你可以完全免费地使用它来实时翻译外语网页,PDF翻译,EPUB电子书翻译,视频双语字幕翻译等。
还可以自由选择调用OpenAI (ChatGPT)、DeepL、Gemini等人工智能引擎来翻译上述内容。
在手机上也可以随时随地用哦,真正帮助你打破信息壁垒,选择下方的平台,立刻开始体验:)

安装

沉浸式翻译 - 网页翻译插件 | PDF翻译 | 免费 - Microsoft Edge Addons

配置

image-20240608174534851

在这里插入图片描述

注:APIKEY一定要填ollama

接口地址写:http://localhost:11434/v1/chat/completions

使用

image-20240608174904404

ComfyUI

简介

官网:GitHub - comfyanonymous/ComfyUI: The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.

参考教程:Comflowy 介绍 – Comflowy

"最具强大且模块化的稳定扩散图形用户界面和后台。此界面将允许您使用基于图/节点/流程图的接口设计并执行高级稳定扩散管道。

安装

建议在wsl开一个ubuntu虚拟机,然后安装部署在虚拟机里。

image-20240608175300394

安装成功之后可以参照docker迁移虚拟机方法,把它迁移到其他盘,因为文生图模型非常大。

在cmd中运行wsl进入到ubuntu20.04的shell

执行下面命令:

安装git、python3.10

sudo apt install git python3.10

下载源码

git clone https://github.com/comfyanonymous/ComfyUI.git

部署

cd ComfyUI
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121
pip install -r requirements.txt

使用

下载模型

这个需要开启魔法访问。

Models - Hugging Face

image-20240608180857409

HuggingFace
你可以将 HuggingFace 理解为 AI 届的 Github。上面会有不少人或组织会将他们的模型分享到上面。你可以通过 HuggingFace 的搜索功能来搜索你想要的模型。

一般你会看到两种后缀的模型:

  • safetensors:这种模型一般用的是 numpy 格式保存,这就意味着它只保存了张量数据,没有任何代码,加载这类文件会更安全和更快。
  • ckpt:这种文件是序列化过的,这意味着它们可能会包含一些恶意代码,加载这类模型就可能会带来安全风险。

所以在上述的案例中,我会推荐你下载 safetensors 格式的模型。

另外,我建议你在搜索模型的时候,需要看看是不是该模型的官方发的,一般我会看模型的下载数,一般下载数越多的模型,越有可能是官方发的。

image-20240608181406137

下载https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors

把你windows的下载路径替换“/mnt/d/windows/Downloads/xx”

mv /mnt/d/windows/Downloads/xx ComfyUI/models/checkpoints/
运行
python main.py

image-20240608181117222

进入http://127.0.0.1:8188即可开始文生图了。
在这里插入图片描述

配置Open Webui使用Comfy UI文生图

image-20240608182408895

地址:

http://host.docker.internal:8188

效果:

image-20240608182616970

首先,使用文本生成模型撰写一个用于图像生成的提示。

完成响应后,您可以点击图片图标以生成图片。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1802757.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux驱动应用编程(四)IIC(获取BMP180温度/压力数据)

本文目录 一、基础1. 查看开发板手册&#xff0c;获取可用IIC总线2. 挂载从机&#xff0c;查看从机地址。3. 查看BMP180手册&#xff0c;使用命令读/写某寄存器值。4. 查看BMP180手册通信流程。 二、IIC常用API1. iic数据包/报2. ioctl函数 三、数据包如何被处理四、代码编写流…

(2024,Vision-LSTM,ViL,xLSTM,ViT,ViM,双向扫描)xLSTM 作为通用视觉骨干

Vision-LSTM: xLSTM as Generic Vision Backbone 公和众与号&#xff1a;EDPJ&#xff08;进 Q 交流群&#xff1a;922230617 或加 VX&#xff1a;CV_EDPJ 进 V 交流群&#xff09; 目录 0. 摘要 2 方法 3 实验 3.1 分类设计 4 结论 0. 摘要 Transformer 被广泛用作计算…

FM148R,FM147A和利时卡件

FM148R,FM147A和利时卡件。软件组成及各部分功能软件组成---各组件功能注意事项&#xff1a;仿真功能&#xff1a;仿真系统可以用于在单机上对组态完成的工程内容进行模拟运行。FM148R,FM147A和利时卡件。便于对这些组态内容的正确性和合理性进行初步调试。二、FM148R,FM147A和…

【Vue】面经基础版-案例效果分析

面经效果演示 功能分析 通过演示效果发现&#xff0c;主要的功能页面有两个&#xff0c;一个是列表页&#xff0c;一个是详情页&#xff0c;并且在列表页点击时可以跳转到详情页底部导航可以来回切换&#xff0c;并且切换时&#xff0c;只有上面的主题内容在动态渲染 实现思路…

C++基础四:C++模板编程

目录 一:函数模板 二:类模板 空间配置器allocator 一:函数模板 模板代码只能同一实现,不能先声明,再在另一文件实现,模板代码都是放在头文件当中的,在头文件中直接实现 二:类模板 template<typename T=int> class SeqStack // 模板名称+类型参数列表 = 类名称…

8.3 Go 包的组织结构

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

list模拟与实现(附源码)

文章目录 声明list的简单介绍list的简单使用list中sort效率测试list的简单模拟封装迭代器insert模拟erase模拟头插、尾插、头删、尾删模拟自定义类型迭代器遍历const迭代器clear和析构函数拷贝构造&#xff08;传统写法&#xff09;拷贝构造&#xff08;现代写法&#xff09; 源…

LabVIEW控制PLC的实现方式

LabVIEW与PLC的结合可以充分发挥两者的优点&#xff0c;实现更高效、灵活和可靠的自动化控制系统。本文将详细介绍LabVIEW控制PLC的实现方式&#xff0c;包括通信接口、数据交换、编程方法及实际应用案例&#xff0c;帮助用户理解并应用这一技术。 通信接口 常见通信协议 La…

Swift 序列(Sequence)排序面面俱到 - 从过去到现在(二)

概览 在上篇 Swift 序列(Sequence)排序面面俱到 - 从过去到现在(一)博文中,我们讨论了 Swift 语言中序列和集合元素排序的一些基本知识,我们还给出了以自定义类型中任意属性排序的“康庄大道”。 不过在实际的撸码场景中,我们往往需要的是“多属性”同时参与到排序的考…

Unity HDRP水系统

1.开启水系统 Script Interactions启用后&#xff0c;HDRP会为CPU上的水模拟分配内存。这允许您在水面上启用CPU模拟来查询高度信息。 2.Sky and Fog Volume中添加Water Rendering并勾选State 3.点击GameObject选择WaterSurface&#xff0c;选择要添加的水类型&#xff08;海…

【Vue】vuex 的使用 - 创建仓库

通用的地方我们一般会称之为仓库 1.安装 vuex 安装vuex与vue-router类似&#xff0c;vuex是一个独立存在的插件&#xff0c;如果脚手架初始化没有选 vuex&#xff0c;就需要额外安装。 yarn add vuex3 或者 npm i vuex32.新建 store/index.js 专门存放 vuex ​ 为了维护项目…

基于协调过滤算法商品推荐系统的设计#计算机毕业设计

基于协调过滤算法商品推荐系统的设计#计算机毕业设计 管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;商品管理&#xff0c;论坛管理&#xff0c;商品资讯管理 前台账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;论坛&#xf…

HIP的应用可移植性

Application portability with HIP — ROCm Blogs (amd.com) 许多科学应用程序在配备AMD的计算平台和超级计算机上运行&#xff0c;包括Frontier&#xff0c;这是世界上第一台Exascale系统。这些来自不同科学领域的应用程序通过使用Heterogeneous-compute Interface for Portab…

Electron qt开发教程

模块安装打包 npm install -g electron-forge electron-forge init my-project --templatevue npm start //进入目录启动 //打包成一个目录到out目录下&#xff0c;注意这种打包一般用于调试&#xff0c;并不是用于分发 npm run package //打出真正的分发包&#xff0c;放在o…

FJSP:烟花算法(FWA)求解柔性作业车间调度问题(FJSP),提供MATLAB代码

一、烟花算法介绍 参考文献&#xff1a; Tan, Y. and Y. Zhu. Fireworks Algorithm for Optimization. in Advances in Swarm Intelligence. 2010. Berlin, Heidelberg: Springer Berlin Heidelberg. 二、烟花算法求解FJSP 2.1FJSP模型介绍 柔性作业车间调度问题(Flexible …

在VMware虚拟机上安装win10 跳过 通过microsoft登录

在VMware虚拟机上安装win10 跳过 “通过microsoft登录” 配置虚拟机&#xff0c;将网卡断开&#xff0c; 具体操作&#xff1a; 虚拟机/设置/硬件/网络适配器/设备状态&#xff0c;取消已连接和启动时连接的两个对号&#xff0c; 再把虚拟机重启&#xff0c;然后就可以跳过这个…

Type-C转音频(C/3.5mm接口USB2.0数据传输)带PD充电低成本解决方案

LDR6500&#xff1a;领先市场的USB-C DRP接口USB PD通信芯片 产品介绍 LDR6500&#xff0c;由乐得瑞科技精心研发&#xff0c;是一款针对USB Type-C标准中Bridge设备而优化的USB-C DRP&#xff08;Dual Role Port&#xff0c;双角色端口&#xff09;接口USB PD&#xff08;Po…

【原创】springboot+mysql农业园区管理系统设计与实现

个人主页&#xff1a;程序猿小小杨 个人简介&#xff1a;从事开发多年&#xff0c;Java、Php、Python、前端开发均有涉猎 博客内容&#xff1a;Java项目实战、项目演示、技术分享 文末有作者名片&#xff0c;希望和大家一起共同进步&#xff0c;你只管努力&#xff0c;剩下的交…

Redis进阶知识个人汇总

持久化 三种方式实现它的持久化&#xff1a; RDB持久化 全称Redis数据备份文件&#xff0c;又称Redis数据快照 这种就是将Redis内存中所有数据记录到磁盘中&#xff0c;当实例出故障后&#xff0c;从磁盘中读快照文件进行恢复数据。 一般使用bgsave指令实现 复制主线程得到一…

五分钟上手IoT小程序

五分钟上手IoT小程序 IoT小程序框架搭建开发环境首先安装NodeJs安装NodeJs验证安装成功 安装cnpm 安装VSCode 开发IDE下载开发IDE安装开发IDE安装框架脚手架 下载模拟器创建工程项目应用编译(打包构建) VSCode 开发IDE安装插件通过开发插件创建工程编译工程debug编译编译太慢问…