Llama模型家族之拒绝抽样(Rejection Sampling)(五)蒙特卡罗算法在拒绝抽样中:均匀分布与样本接受标准

news2025/1/21 14:10:47

LlaMA 3 系列博客

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)

你好 GPT-4o!

大模型标记器之Tokenizer可视化(GPT-4o)

大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例

大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析

大模型之自注意力机制Self-Attention(一)

大模型之自注意力机制Self-Attention(二)

大模型之自注意力机制Self-Attention(三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)

大模型之深入理解Transformer位置编码(Positional Embedding)

大模型之深入理解Transformer Layer Normalization(一)

大模型之深入理解Transformer Layer Normalization(二)

大模型之深入理解Transformer Layer Normalization(三)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (八)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(四)

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(一)Code Shield简介

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(二) LLaMA-Factory训练方法及数据集

大模型之Ollama:在本地机器上释放大型语言模型的强大功能

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(三)通过Web UI微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(四)通过命令方式微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(五) 基于已训练好的模型进行推理

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(六)Llama 3 已训练的大模型合并LoRA权重参数

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(七) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(八) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(九) 使用 LoRA 微调常见问题答疑

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(十) 使用 LoRA 微调常见问题答疑

Llama模型家族训练奖励模型Reward Model技术及代码实战(一)简介

Llama模型家族训练奖励模型Reward Model技术及代码实战(二)从用户反馈构建比较数据集

Llama模型家族训练奖励模型Reward Model技术及代码实战(三) 使用 TRL 训练奖励模型

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(一)RLHF简介

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(二)RLHF 与RAIF比较

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(三) RLAIF 的工作原理

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(四)RLAIF 优势

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(五)RLAIF 挑战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(六) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(七) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(八) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(九) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(十) RLAIF 代码实战

Llama模型家族之拒绝抽样(Rejection Sampling)(一)

Llama模型家族之拒绝抽样(Rejection Sampling)(二)均匀分布简介

Llama模型家族之拒绝抽样(Rejection Sampling)(三)确定缩放常数以优化拒绝抽样方法

Llama模型家族之拒绝抽样(Rejection Sampling)(四) 蒙特卡罗方法在拒绝抽样中的应用:评估线与样本接受标准

在这里插入图片描述

Llama模型家族之拒绝抽样(Rejection Sampling)(五) 蒙特卡罗算法在拒绝抽样中:均匀分布与样本接受标准

在这里插入图片描述

为了得到这个数字, 将使用另一个均匀分布,其范围从 0 到 Cg(x)。尽管均匀分布中的所有随机数都具有相同的概率,但可以看到,随着评估线的规模越来越大,落在评估线右侧的数字会越来越多。这种随机性的使用使得该算法被归类为蒙特卡罗算法。以下是两个显示接受和拒绝事件的图。
在这里插入图片描述
在这里插入图片描述

基于以上解释, 可以看到 对 X 的接受标准可以用数学形式表示为:
在这里插入图片描述
这就是说,如果“u”低于粉红点, 就接受!……请参见下图的原始形式:
在这里插入图片描述

大模型技术分享

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1801380.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

gulimall-search P125 springboot整合elasticsearch版本冲突

一、问题 spring-boot.version 2.2.4.RELEASE,在gulimall-search pom.xml中添加elasticsearch.version 7.4.2后,发现出现如下问题:elasticsearch版本是springboot引入的6.8.6,没有变为7.4.2。 二、原因 在gulimall-search 的pom文件中&#…

HTML,CSS,JavaScript实例——3D骰子,跨纬度蠕虫,动态登录表单。

文章目录 一、3D筛子1.HTML2.CSS 二、跨纬度蠕虫1.HTML2.CSS3.JS 三、动态登录表单1.HTML2.CSS 一、3D筛子 1.HTML <!--ring div starts here--> <div class"ring"><i style"--clr:#00ff0a;"></i><i style"--clr:#ff0057…

UI学习笔记(一)

UI学习 一&#xff1a;UIView基础frame属性隐藏视图对象&#xff1a;UIView的层级关系 二&#xff1a;UIWindow对象三&#xff1a;UIViewController基础UIViewController使用 四&#xff1a;定时器与视图移动五&#xff1a;UISwitch控件六&#xff1a;滑动条和进度条七&#xf…

前端三大主流框架

目录 1.概述 2.React 2.1.作用 2.2.诞生背景 2.3.版本历史 2.4.优缺点 2.5.应用场景 2.6.示例 2.7.未来展望 3.Vue 3.1.作用 3.2.诞生背景 3.3.版本历史 3.4.优缺点 3.5.应用场景 3.7.示例 3.8.未来展望 4.Angular 4.1.作用 4.2.诞生背景 4.3.版本历史 4…

从诺曼底登陆八十周年说起

昨天&#xff08;2024年6月6日&#xff09;是诺曼底登陆&#xff08;Normandy Campaign&#xff09;八十周年纪念日。媒体上有很多对相关纪念活动的报道。 诺曼底登陆战役&#xff0c;是第二次世界大战也是世界战争史上规模最大的登陆战役。敦刻尔克大撤退后&#xff0c;西欧大…

2. pytorch环境安装

概述 ​ 本文提供基于Anaconda环境Windows11操作系统的Pytorch深度学习环境的配置。深度学习环境分为GPU和CPU两大部分。使用GPU进行环境配置&#xff0c;需要保证电脑配有独立显卡&#xff0c;并且显卡驱动安装正常&#xff0c;详情见前文。 1. 创建新的虚拟环境用来配置Pyt…

Suse Linux ssh配置免密后仍需要输入密码

【问题描述】 Suse Linux已经配置了ssh免密&#xff0c;但无法ssh到目标服务器。 对自身的ssh登陆也需要输入密码。 系统–Suse 15 SP5 【重现步骤】 1.使用ssh-keygen -t rsa生产key文件 2.使用ssh-copy-id拷贝public key到目标机器(或者自身) 3.配置成功后ssh 目标时仍需要输…

const详解

关键字const用来定义常量&#xff0c;如果一个变量被const修饰&#xff0c;那么它的值就不能再被改变。 但是&#xff0c;可以通过取地址进行修改。 将const 在指针前进行修饰&#xff0c;那么就修饰指针所指向的变量。 但是指针变量可以被修改。 将const 在指针后进行修饰&am…

外挂知识库的基本知识与内容

外挂知识库 1.什么是rag&#xff1f; RAG,即LLM在回答问题或生成文本时&#xff0c;会先从大量文档中检索出相关的信息&#xff0c;然后基于这些信息生成回答或文本&#xff0c;从而提高预测质量。 2.外挂知识库的实现思路 只用几十万量级的数据对大模型进行微调并不能很好…

使用Python创建Word文档

使用Python创建Word文档 安装python-docx库创建Word文档代码效果 在这篇文章中&#xff0c;我们将介绍如何使用 Python创建一个Word文档。首先&#xff0c;我们需要安装python-docx库&#xff0c;然后通过一段简单的代码示例展示如何创建和编辑Word文档。 安装python-docx库 …

2024 年适用于 Mac 的 5 大免费录屏软件

要成为Mac的优秀屏幕录像机&#xff0c;捕获视频的高清质量和易于操作的界面是两个主要重要因素。此外&#xff0c;Mac上的付费屏幕录像机不仅可以输出高质量的屏幕捕获视频。您也可以在免费的视频捕获软件中获得类似的桌面录制服务。因此&#xff0c;如果您不需要以专业的方式…

企业应如何选择安全合规的内外网文件摆渡系统?

网络隔离是一种安全措施&#xff0c;旨在将网络划分为不同的部分&#xff0c;以减少安全风险并保护敏感信息。常见的隔离方式像物理隔离、逻辑隔离、防火墙隔离、虚拟隔离、DMZ区隔离等&#xff0c;将网络隔离成内网和外网。内外网文件摆渡通常指在内部网络&#xff08;内网&am…

yarn保姆级安装和使用

目录 前言 一、yarn简介 主要特性 使用场景 二、yarn的安装 yarn的下载 配置环境变量 三、yarn的常用命令 四、yarn的常用配置项 五、npm与yarn的区别 前言 本文旨在介绍如何安装和使用Yarn&#xff0c;以及它的一些常见用法。我们将从Yarn的基本概念开始&#xff0c;…

[C#]使用OpenCvSharp图像滤波中值滤波均值滤波高通滤波双边滤波锐化滤波自定义滤波

在使用OpenCvSharp进行图像滤波处理时&#xff0c;各种滤波方法都有其特定的用途和效果。以下是对中值滤波、均值滤波、高通滤波、双边滤波、锐化滤波和自定义滤波的详细解释和归纳&#xff1a; 中值滤波&#xff08;MedianBlur&#xff09; 原理与作用&#xff1a;中值滤波是…

学习Canvas过程中2D的方法、注释及感悟一(通俗易懂)

1.了解Canvas&#xff1a; Canvas是前端一个很重要的知识点&#xff0c;<canvas>标签用于创建画布绘制图形&#xff0c;通过JavaScript进行操作。它为开发者提供一个动态绘制图形的区域&#xff0c;用于创建图标、游戏动画、图像处理等。 对于能够熟练使用Canvas的开发者…

Python报错:IndentationError: unexpected indent问题的解决办法及原因

解决Python报错&#xff1a;IndentationError: unexpected indent问题的解决办法及原因 Python是一种注重可读性的编程语言&#xff0c;它使用缩进来定义代码块。如果你遇到了IndentationError: unexpected indent的错误&#xff0c;这意味着Python解释器在代码中遇到了意外的缩…

qq号码采集软件

寅甲QQ号码采集软件, 一款采集QQ号、QQ邮件地址&#xff0c;采集QQ群成员、QQ好友的软件。可以按关键词采集&#xff0c;如可以按地区、年龄、血型、生日、职业等采集。采集速度非常快且操作很简单。

网络基础_02

1.ARP协议 地址解析协议&#xff08;Address Resolution Protocol&#xff09; 已知对方的三层ip地址&#xff0c;需要二层mac地址 当一台设备&#xff08;请求方&#xff09;需要知道某个 IP 地址对应的 MAC 地址时&#xff0c;会使用 ARP封装一个数据帧。这台设备的网络层以…

【Androi】安卓发展历程详解

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

Socket编程权威指南(二)完美掌握TCP流式协议及Socket编程的recv()和send()

在上一篇文章中&#xff0c;我们学习了Socket编程的基础知识&#xff0c;包括创建Socket、绑定地址、监听连接、接收连接等操作。然而&#xff0c;真正的套接字编程远不止于此。本文将重点介绍TCP 流式协议&#xff0c;什么是粘包问题&#xff1f;如何解决粘包问题 &#xff1f…