一、最大公约数gcd(a,b)
引例:
a=24,其因子有1、2、3、4、6、8、12、24
b=15,其因子有1、3、5、15
最大公约数gcd(a,b)=gcd(24,15)=3
欧几里得辗转算法:
a = max(a,b);
b = min(a,b);
while(b>0){
t = a%b;
a = b;
b = t;
}
运算过程:
a = 24, b = 15
1) t = 24%15 = 9,a = 15,b = 9;
2) t = 15%9 = 6, a = 9, b = 6;
3) t= 9%6 =3, a = 6, b = 3;
4) t = 6%3 = 0, a = 3, b = 0;
b>0条件不满足,while循环停止。
程序代码:
import java.util.Scanner;
public class Test{
public static void main(String[] args){
int a = 0, b = 0;
Scanner sc = new Scanner(System.in);
while(sc.hasNext()){
a = sc.nextInt();
b = sc.nextInt();
System.out.println("欧几里得" + gcd_1(a,b));
System.out.println("递归" + gcd_2(a,b));
}
}
public static int gcd_1(int a, int b){
while(b>0){
int temp = a%b;
a = b;
b = t;//gcd(a,b)=>gcd(b,a%b);
}
return a;
}
public static int gcd_2(int a, int b){
return b==0?a:gcd_2(b, a%b);
}
}
二、最小公倍数lcm(a,b)
L C M ( a , b ) = a ∗ b g c d ( a , b ) LCM(a,b)=\frac{a*b}{gcd(a,b)} LCM(a,b)=gcd(a,b)a∗b