为什么STM32设置Flash地址0x08000000而不是0x00000000?STM32的启动过程

news2024/12/27 1:07:54

STM32F103ZE芯片存储空间的地址映射关系图。

在这里插入图片描述

在MDK编译程序设置ROM和RAM地址时候发现:
  在这里插入图片描述
在这里插入图片描述
IROM1为片上程序存储器,即片上集成的Flash存储器,对该处理器Flash大小为512KB,即0x80000 地址区间为0x8000000~0x0807FFFF
 IRAM1为片上数据存储器,即片上集成的SRAM存储器,对该处理器RAM大小为64KB,即0x10000 地址区间为0x20000000~0x20010000
 
  这里问题为什么程序启动地址在MDK设置里为0x08000000?
  分析根据图1(Cortex-M3 预定义的存储器映射)这个是Cortex-M3核地址的映射分布图,我们看到代码区是0x00000000-0x1FFFFFFF总共对应地址大小为512MB。而对于STM32F103ZE芯片使用到的ROM空间只有512KB。Cortex-M3定下的规矩是从0地址启动,SMT32当然不能破坏ARM定下的“规矩”,所以它做了一个地址重映射的过程。
 疑问:明明代码是下载到 0x80000000 往后的存储空间中,为什么说运行又是从 0x00000000地址运行的呢?为什么不是供 0x80000000 开始运行的呢?
 有关这个问题,就是我们说的单片机的自举。
在这里插入图片描述
正常情况下都是映射到主FLASH上,所以都是从主FLASH上启动的,为了从FLASH启动,我们需要将代码下载到主FLASH上。

什么是重映射?

引用文章,如有侵权请联系作者删除
https://blog.51cto.com/u_14114084/4930970

如果0x00000000-0x001 F FFFF之前是映射在系统存储器或者嵌入式SRAM上的,现在改变BOOT0、BOOT1的电平为0、X。0x00000000-0x001 FFFFF就被重新映射在了主FLASH上,这就是单片机的地址重映射。

重映射就是本来是和张三进行映射的的,现在改为了和李四映射。换句话说重映射就是0x00000000-0x001FFFFF(1MB)本来映射在系统存储器0x1FFF0000-0x1FFF7A0F(30KB)上面,现在映射到了主FLASH0x08000000-0x081 F FFFF(1M8)上面.
在这里插入图片描述
选择从主FLASH启动时,显然FLASH会被映射在了两片地址上。

  • 原本映射的地址(1MB):0x08000000-0x081 F FFFF,进行ST-LINK下载时使用这个地址
    ·重映射的地址(1MB):0x00000000-0x001 F FFFF,启动时CPU就是从重映射的地址读取指令
  • 这两片地址都是有效的,重映射到FLASH上后,CPU从O地址开始运行时,就从FLASH上读
    取指令,当然前提是我们需要将代码下载FLASH中。
    在这里插入图片描述这就解释了为什么我们在keil中设置好程序的下载地址为0x800 0000,但是单片机上电是确实从0开始执行。是因为我们在硬件上设置了BOOT0=1,BOOT1=X,从而导致了主FLASH区(也叫主闪存,大小1MB)被映射到了0x0000 0000 - 0x001F FFFF(1MB),故而代码是下载到 0x80000000 往后的存储空间中,却说运行又是从 0x00000000地址运行的。

疑问:下载时,能不能使用 0x0000 0000 地址来下载?

答:这个不行,因为下载时,0x0000 0000 - 0x001F FFFF 还没有被重映射到 flash 上,只能使用 0x0800 0000 来下载。

既然设置到0x0800 0000这么麻烦,为什么不直接使用0x0000 0000?
这是因为STM32不仅可以从内部Flash启动,还可以从系统存储器(可以实现串口ISP,USB DFU等程序下载方式,这个程序是ST固化好的程序代码)和从内部SRAM启动,
我们将内部Flash安排到0x0000 0000显然是不行的。这样会导致系统存储器或者内部SRAM无法重映射到0x0000 0000了。
在这里插入图片描述
上面说的是我们用JLink下载器下载代码,但是有时候我们还听说可以用串口来下载程序,这又是怎么回事?

用串口下载程序,也就是我们说的ISP在系统中编程。从系统存储器启动,即STM32的ISP了。此时硬件电路B00T0=1,B00T1=0。由于串口不能直接把程序下载到主FLASH里面,所以需要使用到ST公司内嵌于系统存储区的Bootloader来引导把程序下载到主FLASH里面。JLink能直接把程序下载到内置的FLASH里面,是因为JLink下载器内部有Bootloader来引导把程序下载到FLASH里面。 程序下载完成后还需要配置BOOT引脚为BOOT0=0,BOOT1=X(即从主闪存存储器启动),复位后才能正常启动程序。如果你不修改BOOT引脚的话也就是B00T0=1,B00T1=0,那么0x0000 0000 - 0x001F FFFF是不是被重映射到系统存储器上面,而程序代码在主FLASH里面。你复位后程序肯定不能正常运行,只有在使用串口下载程序后配置BOOT引脚为BOOT0=0,BOOT1=X,复位后才能正常执行代码。你明白了吗?

总结:使用JLink下载代码,JLink下载器内部的Bootloader将程序引导下载到主FLASH里面。使用串口下载代码,由于串口没有Bootloader,就要使用ST官方内置在芯片系统存储区的Bootloader代码,将程序引导下载止主FLASH。又因为程序是从0开始执行的,所以我们复位后运行程序时一定要让BOOT0=0,BOOT1=X,将0x00000000 - 0x001FFFFF是重映射到主FLASH我们代码存在的地方,从0开始执行代码。

下图是使用FlyMcu串口下载程序,这个串口是USB-TTL,下载程序时让BOOT0=0,BOOT1=X即可。不是说在系统中编程需要将B00T0=1,B00T1=0吗?这是因为我们使用的是这个软件,这个软件可以通过DTR和RTS改变BOOT的引脚电平,达到不用修改BOOT引脚就可以下载运行代码,实际上是软件替我们做了改变BOOT引脚的操作,具体介绍可以看上面的说明。
在这里插入图片描述

ARM芯片的地址重映射 映射就是一一对应的意思。重映射就是重新分配这种一一对应的关系
  普通的单片机把可执行代码和数据存放到存储器中。单片机中的CPU从储器中取指令代码和数据。其中存储器中每个物理存储单元与其地址是一一对应而且是不可变的。如下图,CPU读取0x00000000地址上存储单元的过程
  在这里插入图片描述

ARM芯片中有些物理存储单元的地址可以根据设置变换。就是说一个物理存储单元现在对应一个地址,经过设置以后,这个存储单元就对应了另外一个地址了(重映射就是重新分配这种一一对应的关系)
  如下图
  在这里插入图片描述

上图表示把0x00000000地址上的存储单元映射到新的地址0x08000000上。CPU存取0x08000000就是存取0x00000000上的物理存储单元。网上说这种重映射设计主要是为了提高应用程序异常响应得速度。因为RAM的存取速度远高于对FLASH的存取速度,当程序发生异常后,这时代码区存在两个异常向量区,提高异常响应速度(待考证)
  那么我们看芯片上的BOOT0和BOOT1配置启动方式如下图:
  在这里插入图片描述

当BOOT1=X,BOOT0=0时(这种情况是嵌入式开发过程中产品最常用的启动方式),则CPU可以访问0x0000000或0x08000000(这两个地址是共同的物理空间)。
  验证设置ROM起始地址为0x00000000是否和0x08000000这样:

在这里插入图片描述   
  通过配置编译环境,仿真时看到memory,0x00000000和0x08000000的数据完全一致。
  如果设置ROM地址为0x0000000进行编译
在这里插入图片描述在这里插入图片描述在这里插入图片描述

通过配置编译环境,仿真时看到memory,0x00000500和0x08000500的数据完全一致。

STM32三种启动模式

下好程序后,重启芯片时,SYSCLK的第4个上升沿,BOOT引脚的值将被锁存,这就是所谓的启动过程。

STM32上电或者复位后,代码区始终从0x00000000开始,其实就是将存储空间的地址映射到0x00000000中。三种启动模式如下:

  • 从主闪存存储器启动,将主Flash地址0x08000000映射到0x00000000,这样代码启动之后就相当于从0x08000000开始。主闪存存储器是STM32内置的Flash,作为芯片内置的Flash,是正常的工作模式。一般我们使用JTAG或者SWD模式下载程序时,就是下载到这个里面,重启后也直接从这启动程序。
  • 从系统存储器启动。首先控制BOOT0、BOOT1管脚,复位后,STM32与上述两种方式类似,从系统存储器地址0x1FFF F000开始执行代码。系统存储器是芯片内部一块特定的区域,芯片出厂时在这个区域预置了一段Bootloader,就是通常说的ISP程序。这个区域的内容在芯片出厂后没有人能够修改或擦除,即它是一个ROM区。启动的程序功能由厂家设置。系统存储器存储的其实就是STM32自带的bootloader代码。
  • 从内置SRAM启动,将SRAM地址0x20000000映射到0x00000000,这样代码启动之后就相当于从0x20000000开始。内置SRAM,也就是STM32的内存,既然是SRAM,自然也就没有程序存储的能力了,这个模式一般用于程序调试。假如我只修改了代码中一个小小的地方,然后就需要重新擦除整个Flash,比较的费时,可以考虑从这个模式启动代码,用于快速的程序调试,等程序调试完成后,在将程序下载到SRAM中。
    用户可以通过设置BOOT1和BOOT0引脚的状态,来选择在复位后的启动模式。STM32三种启动模式对应的存储介质均是芯片内置的,如下图:

串口下载程序原理

从系统存储器启动,这种模式启动的程序功能是由厂家设置的。一般来说,这种启动方式用的比较少。系统存储器是芯片内部一块特定的区域,STM32在出厂时,由ST在这个区域内部预置了一段BootLoader,也就是我们常说的ISP程序,这是一块ROM,出厂后无法修改。

一般来说,我们选用这种启动模式时,是为了从串口下载程序,因为在厂家提供的BootLoader中,提供了串口下载程序的固件,可以通过这个BootLoader将程序下载到系统的Flash中。

这个下载方式需要以下步骤:

将BOOT0设置为1,BOOT1设置为0,然后按下复位键,这样才能从系统存储器启动BootLoader;
在BootLoader的帮助下,通过串口下载程序到Flash中;
程序下载完成后,又有需要将BOOT0设置为GND,手动复位,这样,STM32才可以从Flash中启动。

从汇编代码分析STM32启动过程

STM32的启动文件与编译器有关,不同编译器,它的启动文件不同。虽然启动文件(汇编)代码各有不同,但它们原理类似,都属于汇编程序。拿基于MDK-ARM的启动文件来举例,说一下要点内容。在基于MDK的启动文件开始,有一段汇编代码是分配堆栈大小的。

这里重点知道堆栈数值大小就行。还有一段AREA(区域),表示分配一段堆栈数据段。可以使用STM32CubeMX对上面的数值大小进行配置:

在IAR中,是通过工程配置堆栈大小:

看下面的汇编代码,程序上电之后,是跳到Reset_Handler这个位置。

知道代码是从Reset_Handler开始执行,再来看如下Reset_Handler汇编代码。在启动的时候,执行了SystemInit这个函数。

执行完SystemInit函数,初始化了系统时钟,之后跳转到__main函数执行。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/172950.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

day10文件知识点

模态对话框ajax后台ModelForm校验 目录切换:展示当前文件夹和文件 删除文件夹:嵌套的子文件和子文件夹全部删除 js上传文件到cos(wiki用python上cos上传文件) 进度条的操作(bootstrap)实现 删除文件&#x…

【Linux详解】——进程地址空间

📖 前言:本节将以新的视角看的地址空间的特点,与以前对指针的认识做区分。 目录🕒 1. C/C 地址空间回顾🕒 2. 进程地址空间🕘 2.1 感性理解概念🕘 2.2 如何“画饼”🕘 2.3 区域划分&…

SQL面试题

有3个表S(学生表),C(课程表),SC(学生选课表) S(SNO,SNAME)代表(学号,姓名) C(CNO,CNAME,CTEACHER&…

SAP FICO 定义成本组件结构

成本组件结构定义 我们在使用CK11N核算物料标准成本时候可以看到有项目明细,也可以看到有成本构成,那么问题来了,怎么将项目明细分类到各个成本构成上面呢? 【后台配置路径】: SPRO→控制→产品成本控制→产品成本计划…

【云原生】k8s之包管理器Helm

内容预知 前言 1.Helm的相关知识 1.1 Helm的简介与了解 1.2 Helm的三个重要概念 1.3 Helm2与Helm3的的区别 (1)helm2的部署方式与使用 (2)Helm3的部署与使用 2.Helm在k8s集群中的部署 (1)将Helm安…

【docker概念和实践 3】 注册阿里云账号、应用阿里云数据源

一、说明 阿里云是什么?是出租、出售运算资源的平台。几乎囊括各个领域的运算、存储、服务器、云端资源。阿里云的明星产品四大件是:1、即云服务器ECS、2、云数据库RDS、3、负载均衡SLB 4对象存储OSS。 其它多种服务:云小站_专享特惠_云产品推…

OpenSceneGraph图形状态管理内幕

在这个教程中,我们将了解 Open Scene Graph 如何表示 OpenGL 图形状态,并探索 Open Scene Graph 优化渲染以最小化状态更改次数的一些方法。 推荐:用 3D场景编辑器快速搭建数字孪生场景。 1、OpenGL状态机 Open Scene Graph 最重要的优化之一…

Android的linux内核解耦

1、boot内容查看Boot Image Header,version 2版本包含内容最多,包括了内核、设备树、根目录、recovery设备树,cmdline。boot拆包与内容解析参考1、Android bootimg kernel(boot.img)2、linux的ramdisk解耦2.1、ramdisk…

Python学习笔记——文件操作

输入和输出Python两种输出值的方式: 表达式语句和 print() 函数。第三种方式是使用文件对象的 write() 方法,标准输出文件可以用 sys.stdout 引用。如果你希望输出的形式更加多样,可以使用 str.format() 函数来格式化输出值。如果你希望将输出的值转成字…

H3C路由器带宽保证(命令行)配置方法

1 配置需求或说明 1.1适用产品系列 本案例适用于如MSR810、MSR93X系列的路由器。 1.2配置需求及实现的效果 某企业路由器接入业务有语音业务、管理部门业务和普通业务。要求当网络出现拥塞时,语音业务加速转发,管理部门业务确保转发,剩余或…

小满OKKICRM与金蝶云星空对接集成客户档案

小满OKKICRM与金蝶云星空对接集成客户列表查询(更新列表)&客户新增(小满客户对接金蝶客户-P)数据源平台:小满OKKICRM小满科技成立于2013年,是阿里巴巴集团战略投资的高新技术企业。小满科技以“人工智能大数据”为核心驱动力,为外贸企业提供智能CRM解…

合并所有重叠的区间

Python-合并区间 题目 以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] [starti, endi] 请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 示例 1: 输入:interva…

【Ajax】模板引擎

一、模板引擎的基本概念渲染UI结构时遇到的问题var rows [] //遍历空数组 $.each(res.data, function (i, item) { // 循环拼接字符串rows.push(<li class"list-group-item"> item.content <span class"badge cmt-date">评论时间&#xff1a;…

87.序列到序列学习(seq2seq)以及代码实现

1. 机器翻译 2. Seq2Seq 双向RNN可以做encoder&#xff0c;但不能做decoder。 3. 编码器-解码器细节 4. 训练 5. 衡量生成序列的好坏的BLEU 上面的公式既加入了段序列的惩罚项&#xff0c;又加入了更难出现的长序列的高权重。 6. 总结&#xff1a; Seq2seq从一个句子生成另一…

【网络通信】【电信运营商实战工程师】思科设备篇-网络工程师必备基础知识

电信运营商实战工程师系列文章. 思科设备篇-网络工程师必备基础知识. 文章目录1. 电信运营商网络设备机房2. 认识并管理运营商网络设备3. GNS3 安装与配置4. IPv4地址及子网划分 VLSM-CIDR 详解5. OSI 七层参考模型及进制转换技巧1. 电信运营商网络设备机房 知识点&#xff1a;…

win-bat批处理命令

基本知识 cmd 与 powershel 命令和关键字不区分大小写&#xff0c;变量名区分大小写 DOS 是磁盘操作系统&#xff1b;命令提示符是 DOS 系统的界面中输入 DOS 命令的提示位置&#xff1b;cmd 是系统运行其自带 DOS 的命令 PID 是 processid&#xff08;进程号&#xff09;&am…

36-剑指 Offer 38. 字符串的排列

题目 输入一个字符串&#xff0c;打印出该字符串中字符的所有排列。 你可以以任意顺序返回这个字符串数组&#xff0c;但里面不能有重复元素。 示例: 输入&#xff1a;s "abc" 输出&#xff1a;["abc","acb","bac","bca&quo…

二维前缀和数组二维差分数组

二维前缀和数组&二维差分数组 一维前缀和 用途&#xff1a;快速求出数组中nums[i,j]nums[i,j]nums[i,j]元素之和 定义&#xff1a;sums[i1]sums[i1]sums[i1]为nums数组前iii个元素之和 sums[i1]∑j0inums[j]sums[i 1] \sum _{j0} ^{i}nums[j] sums[i1]j0∑i​nums[j] …

神经网络——day67:Residual Network

Deep Residual Learning for Image RecognitionDeep Residual Learning for Image Recognition1. Introduction2. Related WorkResidual Representations(剩余表示).Shortcut Connections(快捷连接).3. Deep Residual Learning3.1. Residual Learning3.2. Identity Mapping by …

Java项目:学生管理系统

Java项目&#xff1a;学生管理系统一、学生管理系统基础版需求1. 初始菜单2. 学生类&#xff1a;3. 添加功能&#xff1a;4. 删除功能&#xff1a;5. 修改功能&#xff1a;6. 查询功能&#xff1a;代码1. 学生类2. 测试类输出结果a. 添加b. 删除c. 修改d. 查询e. 退出二、学生管…