【YOLOv10的使用】YOLOv10的训练/验证/预测/导出模型/ONNX模型的使用

news2024/11/18 13:28:47

🚀🚀🚀 YOLOv10: 实时端到端的目标检测

性能

YOLOv10比最先进的YOLOv9延迟时间更低,测试结果可以与YOLOv9媲美,可能会成为YOLO系列模型部署的“新选择”。

目录

1 安装

2 训练

3 验证

4 预测

5 导出模型

6 ONNX模型的使用


官方论文地址:https://arxiv.org/pdf/2405.14458

官方代码地址:GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection

1 安装

建议使用Conda虚拟环境

① 克隆YOLOv10项目

git clone https://github.com/THU-MIG/yolov10.git

② 安装

conda create -n yolov10 python=3.9

conda activate yolov10

cd yolov10项目所在路径

pip install -r requirements.txt

pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple

2 训练

imgsz:图像放缩大小resize,默认是640。

device:设备id,可以是cpu,如果只有一张显卡,则device=0,如果有两张,则device=0,1,依次类推。

训练示例如下:

  • 方式一
# 从yaml构建全新的模型

yolo detect train data=coco128.yaml model=yolov10s.yaml epochs=100 batch=8 imgsz=640 device=cpu project=yolov10

  • 方式二

首先,需要下载模型。链接如下:

yolov10n.pt yolov10s.pt yolov10m.pt yolov10b.pt yolov10l.pt yolov10x.pt

下载后的模型放在YOLOv10的工程目录下即可。

# 从预训练模型开始训练

yolo detect train data=coco128.yaml model=yolov10s.pt epochs=100 batch=8 imgsz=640 device=cpu project=yolov10

  • 方式三

配置好ultralytics/cfg/default.yaml这个文件之后,可以直接执行这个文件进行训练,这样就不需要在命令行输入其它的参数。

yolo cfg=ultralytics/cfg/default.yaml

官方原版的default.yaml的内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default training settings and hyperparameters for medium-augmentation COCO training

task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark

# Train settings -------------------------------------------------------------------------------------------------------
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
data: # (str, optional) path to data file, i.e. coco128.yaml
epochs: 100 # (int) number of epochs to train for
time: # (float, optional) number of hours to train for, overrides epochs if supplied
patience: 100 # (int) epochs to wait for no observable improvement for early stopping of training
batch: 16 # (int) number of images per batch (-1 for AutoBatch)
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
save: True # (bool) save train checkpoints and predict results
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
val_period: 1 # (int) Validation every x epochs
cache: False # (bool) True/ram, disk or False. Use cache for data loading
device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
project: # (str, optional) project name
name: # (str, optional) experiment name, results saved to 'project/name' directory
exist_ok: False # (bool) whether to overwrite existing experiment
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
verbose: True # (bool) whether to print verbose output
seed: 0 # (int) random seed for reproducibility
deterministic: True # (bool) whether to enable deterministic mode
single_cls: False # (bool) train multi-class data as single-class
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
cos_lr: False # (bool) use cosine learning rate scheduler
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
resume: False # (bool) resume training from last checkpoint
amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
multi_scale: False # (bool) Whether to use multiscale during training
# Segmentation
overlap_mask: True # (bool) masks should overlap during training (segment train only)
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
# Classification
dropout: 0.0 # (float) use dropout regularization (classify train only)

# Val/Test settings ----------------------------------------------------------------------------------------------------
val: True # (bool) validate/test during training
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
save_json: False # (bool) save results to JSON file
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
max_det: 300 # (int) maximum number of detections per image
half: False # (bool) use half precision (FP16)
dnn: False # (bool) use OpenCV DNN for ONNX inference
plots: True # (bool) save plots and images during train/val

# Predict settings -----------------------------------------------------------------------------------------------------
source: # (str, optional) source directory for images or videos
vid_stride: 1 # (int) video frame-rate stride
stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False)
visualize: False # (bool) visualize model features
augment: False # (bool) apply image augmentation to prediction sources
agnostic_nms: False # (bool) class-agnostic NMS
classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
retina_masks: False # (bool) use high-resolution segmentation masks
embed: # (list[int], optional) return feature vectors/embeddings from given layers

# Visualize settings ---------------------------------------------------------------------------------------------------
show: False # (bool) show predicted images and videos if environment allows
save_frames: False # (bool) save predicted individual video frames
save_txt: False # (bool) save results as .txt file
save_conf: False # (bool) save results with confidence scores
save_crop: False # (bool) save cropped images with results
show_labels: True # (bool) show prediction labels, i.e. 'person'
show_conf: True # (bool) show prediction confidence, i.e. '0.99'
show_boxes: True # (bool) show prediction boxes
line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None.

# Export settings ------------------------------------------------------------------------------------------------------
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
keras: False # (bool) use Kera=s
optimize: False # (bool) TorchScript: optimize for mobile
int8: False # (bool) CoreML/TF INT8 quantization
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
simplify: False # (bool) ONNX: simplify model
opset: # (int, optional) ONNX: opset version
workspace: 4 # (int) TensorRT: workspace size (GB)
nms: False # (bool) CoreML: add NMS

# Hyperparameters ------------------------------------------------------------------------------------------------------
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
lrf: 0.01 # (float) final learning rate (lr0 * lrf)
momentum: 0.937 # (float) SGD momentum/Adam beta1
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
warmup_momentum: 0.8 # (float) warmup initial momentum
warmup_bias_lr: 0.1 # (float) warmup initial bias lr
box: 7.5 # (float) box loss gain
cls: 0.5 # (float) cls loss gain (scale with pixels)
dfl: 1.5 # (float) dfl loss gain
pose: 12.0 # (float) pose loss gain
kobj: 1.0 # (float) keypoint obj loss gain
label_smoothing: 0.0 # (float) label smoothing (fraction)
nbs: 64 # (int) nominal batch size
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
degrees: 0.0 # (float) image rotation (+/- deg)
translate: 0.1 # (float) image translation (+/- fraction)
scale: 0.5 # (float) image scale (+/- gain)
shear: 0.0 # (float) image shear (+/- deg)
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # (float) image flip up-down (probability)
fliplr: 0.5 # (float) image flip left-right (probability)
bgr: 0.0 # (float) image channel BGR (probability)
mosaic: 1.0 # (float) image mosaic (probability)
mixup: 0.0 # (float) image mixup (probability)
copy_paste: 0.0 # (float) segment copy-paste (probability)
auto_augment: randaugment # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)
erasing: 0.4 # (float) probability of random erasing during classification training (0-1)
crop_fraction: 1.0 # (float) image crop fraction for classification evaluation/inference (0-1)

# Custom config.yaml ---------------------------------------------------------------------------------------------------
cfg: # (str, optional) for overriding defaults.yaml

# Tracker settings ------------------------------------------------------------------------------------------------------
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]

3 验证

验证示例如下:

cd yolov10项目所在的路径

yolo task=detect mode=val split=val model=yolov10/train3/weights/best.pt  data=ultralytics/cfg/datasets/coco128.yaml batch=4 device=cpu

验证过程的产物:

结果图:

4 预测

预测示例如下:

cd yolov10项目所在的路径

yolo task=detect mode=predict model=yolov10/train3/weights/best.pt source=test1.jpg device=cpu

预测效果如下图:

5 导出模型

导出ONNX模型示例:

# export custom trained model

yolo task=detect mode=export model=yolov10/train3/weights/best.pt format=onnx  

6 ONNX模型的使用

命令行方式:

yolo detect predict model=yolov10/train3/weights/best.onnx source='test2.jpg'

检测结果图片如下:

到此,本文分享的内容就结束啦!遇见便是缘,感恩遇见!点个赞 + 关注吧!哈哈哈哈!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1713242.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

股价飙升:AI PC大变革,联想的“联想时刻”正在缔造?

按照产业的传导逻辑&#xff0c;在颠覆式技术到来之时&#xff0c;当引发这场变革的最核心技术及产品真正进入了产品化、商业化阶段&#xff0c;此时直触需求端的终端厂商&#xff0c;其成长性估算将得到市场的重新预估。 眼下AI PC之于联想就是如此。 5月27日&#xff0c;联…

使用 CNN 训练自己的数据集

CNN&#xff08;练习数据集&#xff09; 1.导包&#xff1a;2.导入数据集&#xff1a;3. 使用image_dataset_from_directory()将数据加载tf.data.Dataset中&#xff1a;4. 查看数据集中的一部分图像&#xff0c;以及它们对应的标签&#xff1a;5.迭代数据集 train_ds&#xff0…

高维数组到向量的转换:两种方法的深度解析

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、引言&#xff1a;高维数组的挑战与需求 二、方法一&#xff1a;使用NumPy库进行展平 示…

HTML+CSS 圆形菜单

效果演示 实现了一个圆形菜单的效果,点击菜单按钮后,菜单项会从菜单按钮中心点向外展开,并且菜单项上有文字链接。可以将这段代码的效果称为“圆形菜单展开效果”。 Code <!DOCTYPE html> <html lang="en"><head><meta charset="UTF-8…

word 替换全部字母和数字为新罗马

步骤1&#xff0c;准备好一份测试文档 Adfafdafdafdafdsafdsafasdfdsa 汇总的时光发生的尬的算法的萨法asdfasfsafda大法师短发沙发上对方阿福的萨法的算法大法大方发达舒服打发到沙发上对方说 打发打发打发的负担啊大方阿道夫大法东方大厦发大水Ameti 1. Adafe我直打大噶特区…

Vue开发者工具安装

通过谷歌应用商店安装&#xff08;国外网站&#xff09; 极简插件下载&#xff08;推荐&#xff09;&#xff1a;下载 → 解压 → 点击左上角的三个小点 → 开发者模式 → 拖拽安装 → 插件详情允许访问文件 https://chrome.zzzmh.cn/index 安装步骤&#xff1a; 安装之后可…

集合的综合练习

自动点名器1&#xff1a;班级里有N个学生&#xff0c;实现随机点名器 public class test {public static void main(String [] args) {ArrayList<String> listnew ArrayList<>();//创建一个集合//在集合中添加元素Collections.addAll(list, "李明",&quo…

618必买的数码好物有哪些?盘点兼具设计与实用的数码好物分享

随着618购物节的到来&#xff0c;数码爱好者们又开始跃跃欲试&#xff0c;期待在这个年度大促中寻找到自己心仪的数码好物&#xff0c;在这个数字化时代&#xff0c;数码产品不仅是我们日常生活的必需品&#xff0c;更是提升生活品质的重要工具&#xff0c;那么在众多的数码产品…

一行命令将已克隆的本地Git仓库推送到内网服务器

一、需求背景 我们公司用gitea搭建了一个git服务器&#xff0c;其中支持win7的最高版本是v1.20.6。 我们公司的电脑在任何时候都不能连接外网&#xff0c;但是希望将一些开源的仓库移植到内网的服务器来。一是有相关代码使用的需求&#xff0c;二是可以建设一个内网能够查阅的…

【数据结构和算法】-动态规划爬楼梯

动态规划&#xff08;Dynamic Programming&#xff0c;DP&#xff09;是运筹学的一个分支&#xff0c;主要用于解决包含重叠子问题和最优子结构性质的问题。它的核心思想是将一个复杂的问题分解为若干个子问题&#xff0c;并保存子问题的解&#xff0c;以便在需要时直接利用&am…

15.Redis之持久化

0.知识引入 mysql的事务,有四个比较核心的特性. 1. 原子性 2.一致性 3.持久性 >(和持久化说的是一回事)【把数据存储在硬盘 >持久把数据存储茌内存上>不持久~】【重启进程/重启主机 之后,数据是否存在!!】 4.隔离性~ Redis 是一个 内存 数据库.把数据存储在内存中的…

运维必备的 Linux文件系统

1 前言 我们来简单看一下Linux系统的磁盘、目录、文件。 2 Linux 文件系统 在 Linux 操作系统中&#xff0c;所有被操作系统管理的资源&#xff0c;例如网络接口卡、磁盘驱动器、打印机、输入输出 设备、普通文件或是目录都被看作是一个文件。 也就是说在 Linux 系统中有…

长文总结 | Python基础知识点,建议收藏

测试基础-Python篇 基础① 变量名命名规则 - 遵循PEP8原则 普通变量&#xff1a;max_value 全局变量&#xff1a;MAX_VALUE 内部变量&#xff1a;_local_var 和关键字重名&#xff1a;class_ 函数名&#xff1a;bar_function 类名&#xff1a;FooClass 布尔类型的变量名…

21天精通FL Studio21.2.8!中文汉化全攻略方法教程

在音乐制作的世界中&#xff0c;有一款软件以其强大的功能和易用性而广受好评&#xff0c;那就是FL Studio。而最新版本的FL Studio 21更是在原有的基础上进行了全面的升级&#xff0c;为我们带来了更多的惊喜。今天&#xff0c;我们就一起来了解一下这款最新的水果软件——FL …

全球首例光伏电场网络攻击事件曝光

快速增长的光伏发电正面临日益严重的网络安全威胁。近日&#xff0c;日媒报道了首个针对光伏电场的网络攻击事件。 首例公开确认的光伏电网攻击 日本媒体《产经新闻》近日报道&#xff0c;黑客劫持了一个大型光伏电网中的800台远程监控设备(由工控电子制造商Contec生产的Solar…

超分论文走读

codeFormer 原始动机 高度不确定性&#xff0c;模糊到高清&#xff0c;存在一对多的映射纹理细节丢失人脸身份信息丢失 模型实现 训练VQGAN 从而得到HQ码本空间作为本文的离散人脸先验。为了降低LQ-HQ映射之间的不确定性&#xff0c;我们设计尽量小的码本空间和尽量短的Code…

文心智能体:基于零代码平台的智能体开发与应用

文章目录 初识文心智能体文心智能体平台优势文心智能体平台功能 创建文心智能体总结 初识文心智能体 文心智能体平台是基于文心大模型的智能体构建平台&#xff0c;为开发者提供低成本的开发方式&#xff0c;支持广大开发者根据自身行业领域、应用场景&#xff0c;采用多样化的…

isscc2024 short course4 In-memory Computing Architectures

新兴的ML加速器方法&#xff1a;内存计算架构 1. 概述 内存计算&#xff08;In-memory Computing&#xff09;架构是一种新兴的机器学习加速器方法&#xff0c;通过将计算能力集成到存储器中&#xff0c;以减少数据移动的延迟和能耗&#xff0c;从而提高计算效率和性能。这种方…

用于癌症免疫治疗的自佐剂聚胍纳米疫苗

近期&#xff0c;沈阳药科大学孙进教授团队、罗聪教授团队与新加坡国立大学陈小元教授团队共同合作在美国化学会旗下期刊《ACS nano》&#xff08;IF17.1&#xff09;上发表题为“Self-Adjuvanting Polyguanidine Nanovaccines for Cancer Immunotherapy”&#xff08;用于癌症…

Sora,开启通往世界模拟之路!

2024年2月16日&#xff0c;OpenAI发布视频生成AI大模型Sora。消息一经发出&#xff0c;业界再一次被之震撼。 OpenAI官网描述&#xff1a;Sora是一个根据文本指令生成真实与虚拟场景的AI模型&#xff0c;可根据用户指令生成时长达1分钟的高清视频&#xff0c;能生成具有多个角色…