Pytorch入门需要达到的效果

news2025/1/9 1:54:47

会搭建深度学习环境和依赖包安装

使用Anaconda创建环境、在pytorch官网安装pytorch、安装依赖包

会使用常见操作,例如matmulsigmoidsoftmaxrelulinear

matmul操作见文章torch.matmul()的用法
sigmoidsoftmaxrelu都是常用的激活函数,linear是线性层:

from torch import nn

class Network(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Sigmoid(),
            nn.Softmax(),
            nn.ReLU(),
            nn.Linear(1024, 64)
        )

datasetdataloader,损失函数,优化器的使用

datasetdataloader

官方文档是这么写的:
在这里插入图片描述
当我们自定义一个dataset的时候,需要继承Dataset,重写__getitem__()方法,也可以重写__len__()方法,下面是一个例子,我们的数据集存放成这种形式,每一个image图片都对应一个相同名称的label文件,如0013035.jpg0013035.txt就分别是一个图片和它的label
在这里插入图片描述

import torchvision.transforms
from PIL import Image
from torch.utils.data import Dataset, DataLoader


class MyData(Dataset):
    def __init__(self, root_dir, image_dir, label_dir):
        self.root_dir = root_dir
        self.image_dir = image_dir
        self.label_dir = label_dir
        self.image_path = os.path.join(self.root_dir, self.image_dir)
        self.label_path = os.path.join(self.root_dir, self.label_dir)
        self.imgs = os.listdir(self.image_path)
        self.labels = os.listdir(self.label_path)

    def __getitem__(self, item):
        img_name = self.imgs[item]
        img_item_path = os.path.join(self.image_path, img_name)
        label_item_path = os.path.join(self.label_path, self.convert_to_txt_path(img_name))
        img = Image.open(img_item_path)
        with open(label_item_path, 'r') as f:
            label = f.read().strip()
        return img, label

    def convert_to_txt_path(self, image_path):
        # 使用正则表达式匹配文件名中的点和扩展名,并替换为'.txt'
        label_path = re.sub(r'\.[^.]+?$', '.txt', image_path)
        return label_path

    def __len__(self):
        return len(self.imgs)

root_dir = "dataset/train"
ants_image_dir = "ants_image"
bees_image_dir = "bees_image"
ants_label_dir = "ants_label"
bees_label_dir = "bees_label"
ants_dataset = MyData(root_dir, ants_image_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_image_dir, bees_label_dir)

train_dataset = ants_dataset + bees_dataset

img, target = train_dataset[0]
transform = torchvision.transforms.ToTensor()
print(transform(img).shape)
print(target)

我们使用dataloader来读取这个数据集,我们需要对jpg格式的dataset进行处理,将其转换为相同大小的tensor,再读取:

import torchvision.transforms
from PIL import Image
from torch.utils.data import Dataset, DataLoader


class MyData(Dataset):
    def __init__(self, root_dir, image_dir, label_dir):
        self.root_dir = root_dir
        self.image_dir = image_dir
        self.label_dir = label_dir
        self.image_path = os.path.join(self.root_dir, self.image_dir)
        self.label_path = os.path.join(self.root_dir, self.label_dir)
        self.imgs = os.listdir(self.image_path)
        self.labels = os.listdir(self.label_path)

    def __getitem__(self, item):
        img_name = self.imgs[item]
        img_item_path = os.path.join(self.image_path, img_name)
        label_item_path = os.path.join(self.label_path, self.convert_to_txt_path(img_name))
        img = Image.open(img_item_path)
        transcompose = torchvision.transforms.Compose([torchvision.transforms.Resize((300, 300)), torchvision.transforms.ToTensor()])
        img = transcompose(img)
        with open(label_item_path, 'r') as f:
            label = f.read().strip()
        return img, label

    def convert_to_txt_path(self, image_path):
        # 使用正则表达式匹配文件名中的点和扩展名,并替换为'.txt'
        label_path = re.sub(r'\.[^.]+?$', '.txt', image_path)
        return label_path

    def __len__(self):
        return len(self.imgs)

root_dir = "dataset/train"
ants_image_dir = "ants_image"
bees_image_dir = "bees_image"
ants_label_dir = "ants_label"
bees_label_dir = "bees_label"
ants_dataset = MyData(root_dir, ants_image_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_image_dir, bees_label_dir)

train_dataset = ants_dataset + bees_dataset

img, target = train_dataset[0]
print(img.shape)
print(target)

train_dataloader = DataLoader(train_dataset, batch_size=64, drop_last=True)
for data in train_dataloader:
    try:
        imgs, target = data
    except Exception as e:
        print(f"跳过异常文件:  {e}")

使用公开数据集的示例如下:

import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)

# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter("dataloader")
for epoch in range(2):
    step = 0
    for data in test_loader:
        imgs, targets = data
        # print(imgs.shape)
        # print(targets)
        writer.add_images("Epoch: {}".format(epoch), imgs, step)
        step = step + 1

writer.close()

损失函数

Loss的用法实际上就两行代码的事情,以下是示例:

import torch
from torch.nn import L1Loss, MSELoss
from torch import nn

inputs = torch.tensor([1, 2, 3], dtype=torch.float)
targets = torch.tensor([1, 2, 5], dtype=torch.float)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))

loss = L1Loss(reduction='sum')
result = loss(inputs, targets)

loss_mse = MSELoss()
result_mse = loss_mse(inputs, targets)

print(result)
print(result_mse)

x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x, y)
print(result_cross)

优化器

优化器的使用也很简单,但要注意,在每一步训练之前都需要用optim.zero_grad()将梯度置零,避免梯度累加造成问题,用loss.backward()得到梯度以后用optim.step()更新参数

import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter


dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=1)

class Network(nn.Module):
    def __init__(self):
        super().__init__()
        self.model1 = Sequential(
            Conv2d(3, 32,5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32,5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64,10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x

loss = nn.CrossEntropyLoss()
network = Network()
optim = torch.optim.SGD(network.parameters(), lr=0.01)

for epoch in range(20):
    running_loss = 0.0
    for data in dataloader:
        imgs, targets = data
        outputs = network(imgs)
        result_loss = loss(outputs, targets)
        optim.zero_grad()
        result_loss.backward()
        optim.step()
        running_loss = running_loss + result_loss
    print(running_loss)

gpu手写和预测一个模型

gpu写模型

这里采用to(device)的方式使用gpu,对模型、损失函数和读数据部分使用to(device)调用gpu,其他和cpu并无区别:

import torch
import torchvision.datasets
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# from model import *

# 定义训练的设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                        download=True)

# length
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为: {}".format(train_data_size))
print(f"测试数据集的长度为: {test_data_size}")

# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
# 搭建神经网络
class Network(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)

        )

    def forward(self, x):
        x = self.model(x)
        return x

network = Network()
network.to(device)

# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn.to(device)

# 优化器
# learning_rate = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(network.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 30

# 添加tensorboard
writer = SummaryWriter("logs_train")
start_time = time.time()
for i in range(epoch):
    print("-----------第 {} 轮训练开始----------".format(i+1))

    # 训练步骤开始
    network.train()
    for data in train_dataloader:
        imgs, targets = data
        imgs = imgs.to(device)
        targets = targets.to(device)
        outputs = network(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            end_time = time.time()
            print(end_time - start_time)
            print("训练次数: {}, loss: {}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    network.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = network(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss: {}".format(total_test_loss))
    print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    torch.save(network, "network_{}.pth".format(i))
    print("模型已保存")

writer.close()

gpu预测模型

把读取到的模型和数据用to(device)设置成gpu运行

import torch
import torchvision.transforms
from PIL import Image
from torch import nn

# 定义训练的设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
img_path = "dog.png"
image = Image.open(img_path)
print(image)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])
image = transform(image)
print(image.shape)

# 搭建神经网络
class Network(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)

        )

    def forward(self, x):
        x = self.model(x)
        return x

model = torch.load("network_29.pth").to(device)
print(model)
image = torch.reshape(image, (1, 3, 32, 32))
image = image.to(device)
model.eval()
with torch.no_grad():
    output = model(image)
print(output)

print(output.argmax(1))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1707699.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【算法】位运算算法——判断字符是否唯一

题解:判断字符是否唯一(位运算算法) 目录 1.题目2.题解3.位图参考代码4.细节5.总结 1.题目 题目链接:LINK 2.题解 题解有两种方法, 一是做一个哈希数组,去查重; 二是直接用一个变量每一位来对应表示是否有这个字母…

Linux主机连接腾讯云服务器详细配置

硬件条件 当然你要先有一个云服务器,腾讯云比阿里云便宜一点,所以就用腾讯云了 问了师兄买这个98的就行,选择CentOS,不要选Ubuntu,因为 嗯,大概就是这样 编程测试 云服务器当然是作为服务端 server.cpp…

LabVIEW高低温试验箱控制系统

要实现LabVIEW高低温试验箱控制系统,需要进行硬件配置、软件设计和系统集成,确保LabVIEW能够有效地监控和控制试验箱的温度。以下是详细说明: 硬件配置 选择合适的试验箱: 确定高低温试验箱的型号和品牌。 确认试验箱是否支持外…

SpringBoot 返回值 i18n 自动处理

定义基础通用类 首先定义一波错误码:ResultCode Getter AllArgsConstructor public enum ResultCode {SUCCESS(200, "请求成功", "request.success"),Fail(400, "请求失败", "request.failed"),PASSWORD_NOT_MATCH(1000…

保护“第二生命线”,科技守护颈椎健康

脊柱支撑着人体重量,汇集着众多血管神经,素有“人体第二生命线”之称。在如今快节奏的时代,人们生活方式也在发生着变化,长期低头看手机、伏案久坐等不良生活习惯引发脊柱健康问题,且呈现年轻化趋势。目前,…

2024.05.22学习记录

1、面经复习: Vue组件通讯、vuex、js严格模式、options请求、vue3 Setup 语法糖、React hook 2、代码随想录刷题:动态规划 3、rosebush组件库 完成Alert和Alert测试 Menu组件初步开发

基于单片机的自行车里程监测系统的设计

摘 要 :本设计是一种基于单片机的自行车里程监测系统,采用 STC89C52RC 单片机为核心处理芯片,液晶显示器使用 LCD1602 , 速度测量使用霍尔传感器,温度传感器使用 DS18B20 ,时间由时钟芯片 DS1302 进行…

昆仑通态触摸屏组态软件MCGS 嵌入版V7.7.1.7老版触摸屏安装程序

1.MCGS7.7嵌入版用于昆仑通态老版本触摸屏组态开发,具体支持哪些型号组态,可以在软件的工程设置里面查看。新出的触摸屏一般用MCGS Pro版本组态开发,老版本触摸屏必须用MCGS 7.7嵌入版组态开发。 2.MCGS7.7嵌入版支持当下常用的Win7、Win10、…

Nodejs 第七十三章(网关层)

什么是网关层(getway)? 技术选型fastify 速度快适合网关层 fastify教程上一章有讲 网关层是位于客户端和后端服务之间的中间层,用于处理和转发请求。它充当了请求的入口点,并负责将请求路由到适当的后端服务,并将后端服务的响应…

怎样打造一份个性化画册呢?我来教你

在这个数字化的时代,传统的照片已经不能满足我们对个性化回忆的需求。个性化画册,不仅能够承载我们的记忆,还能展现自我风格。今天,就让我来教你如何打造一份属于自己的个性化画册。 1.要制作电子杂志,首先需要选择一款适合自己的…

Debian12 安装留档@Virtual Box

在学蜜罐系统的时候,T-Pot 需要Debian,于是安装Debian12 下载安装光盘 先去中科大下载了12的安装光盘,然后在VirtualBox中创建一个新虚拟机,将安装光盘挂载上。 安装光盘下载地址:https://mirrors.ustc.edu.cn/debi…

隐藏服务器源IP怎么操作,看这一篇学会!

在当今的网络环境中,服务器作为信息和服务的中枢,常驻于公网之上,面临着各式各样的安全威胁,其中,分布式拒绝服务(DDoS)攻击尤为猖獗,它通过协调大量计算机同时向目标服务器发送请求…

看花眼,眼花缭乱的主食冻干到底应该怎么选?靠谱的主食冻干分享

随着科学养猫知识的普及,主食冻干喂养越来越受到养猫人的青睐。主食冻干不仅符合猫咪的饮食天性,还能提供均衡的营养,有助于维护猫咪的口腔和消化系统健康。许多猫主人认识到了主食冻干喂养的诸多益处,计划尝试这种喂养方式&#…

缓存三问与缓存预热-如何预防缓存崩溃

一、缓存三剑客 (图片来源:什么是缓存雪崩、击穿、穿透? | 小林coding) 缓存穿透 (Cache Penetration) 又称"空缓存"指用户请求的数据在缓存和数据库中都不存在,导致每次请求都去查询数据库,给数据库带来巨大压力。解…

代码随想录——平衡二叉树(Leetcode110)

题目链接 后序遍历高度,高度判断是否平衡 前序遍历深度 递归 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val val; }* …

短视频再度重逢:四川京之华锦信息技术公司

短视频再度重逢 在数字化时代的浪潮中,短视频以其独特的魅力迅速崛起,成为现代人生活中不可或缺的一部分。而当我们谈论起短视频,我们不仅仅是在谈论一种娱乐方式,更是在谈论一种情感的载体,一种回忆的媒介。今天&…

143.栈和队列:用队列实现栈(力扣)

题目描述 代码解决 class MyStack { public:queue<int> que; // 定义一个队列用于实现栈// 构造函数&#xff0c;初始化队列MyStack() {}// 向栈中推入元素 xvoid push(int x) {que.push(x); // 使用队列的 push 方法将元素 x 添加到队列尾部}// 从栈中弹出并返回栈顶元…

【edge浏览器】控制台报错信息隐藏-恢复

问题描述 解决方法&#xff1a;只需要清空筛选器

软件构造复习1

一、软件构造的多维度视图&#xff1a; 共有三个维度&#xff1a;1.按阶段划分&#xff1a;构造时/运行时视图&#xff0c;2.按动态性划分&#xff1a;时刻/阶段视图&#xff0c;3.按构造对象层次划分&#xff1a;代码/构件视图 具体可如图所示&#xff08;图片来自PPT&#…

Vue3实战笔记(36)—粒子特效完成炫酷的404

文章目录 前言404特效总结 前言 昨天介绍了一个粒子特效小例子&#xff0c;不够直观&#xff0c;下面直接实战在自己的项目中实现一个好玩滴。 404特效 更改之前创建好的404.vue: <template><div class"container"><vue-particles id"tspartic…