大语言模型训练部署流程及步骤

news2024/11/15 17:21:26

01.确定需求大小

在构建大语言模型的前期准备中,基础设施是最为重要的,GPU的型号以及数据直接关系到模型的训练质量和训练时间。例如:使用单个V100的GPU训练具有1750亿个参数的GPT-3将需要约288年,那就更不用提现在动辄万亿参数的大模型。好在随着A100和H100更强算力资源的推出,大模型的训练速度被大大加快。

图片

https://zhuanlan.zhihu.com/p/667240050

但是即便是单GPU的算力提升,训练超级规模的大语言模型也并不是一件容易的事情,这是因为:

a)GPU内存容量是有限的,使得即使在多GPU服务器上也无法适合大型模型

b)所需的计算操作的数量可能导致不切实际的长训练时间。

图片

单机多卡的训练模式

后来,各种模型并行性技术以及多机多卡的分布式训练部分解决了这两个挑战。

使用数据并行性,每个工作人员都有一个完整模型的副本,输入数据集被分割,工作人员定期聚合他们的梯度,以确保所有工作人员都看到权重的一致版本。对于不适合单个GPU的大模型,数据并行性可以在较小的模型碎片上使用。

图片

数据并行的训练模式通过模型并行性,模型的图层将在多个设备之间共享

当使用相同变压器块的模型时,每个设备可以分配相同数量的变压器层。一个批被分割成更小的微批;然后在微批次之间通过流水线执行。为了精确地保留严格的优化器语义,技术人员引入了周期性的管道刷新,以便优化器步骤能够跨设备同步。

图片

张量和管道模型并行性(MP)在本工作中用于基于变压器的模型。

图片

经过技术优化后的实际表现

在大模型开始训练之前,我们可以考虑到这些吞吐量,估计出进行端到端训练所需的总时间。

端到端的训练时间计算公式如下:

图片

我们以P=1750亿个参数的GPT-3模型为例。

该模型在T=3000亿个Tokens上进行了训练。在n= 1024 A100图形处理器上,使用批量大小为1536,实现了X=140兆浮点运算每秒每个GPU。因此,训练这个模型所需的时间是34天。对于1万亿个参数模型,我们假设端到端训练需要4500亿个Tokens。使用3072个A100 GPU,我们可以实现每个GPU的吞吐量为163兆浮点运算每秒每个GPU,所以训练时间为84天。事实上,技术进步能够给我们带来的好处是,变量X的提高使得我们训练模型所需要的时间正在逐步减少,因此对于搭建自有的大模型来说,训练多大的规模参数就需要有多大规模的算力。

02.数据收集

对于初代大模型来说,数据收集以及后续的处理是一件非常繁琐且棘手的事情,在这一过程中需要面临诸多的问题,比如数据许可,数据集的特征和覆盖率,数据预处理的充分性,如何解决数据集偏差,如何解决数据集公平性,不同国家数据集的差异,数据隐私,数据安全等等。

初代大模型的推出是具有跨时代的意义,这不仅仅是让人们充分利用到大语言模型的便利性,也为更多大语言的推出铺平了道路,例如:ChatGPT训练了几乎所有能在公开渠道找到的数据,包括全部的推特数据(事实上,今年马斯克已经限制了推特API的采集数量,所以后续大模型再想利用全部的推特数据来完成训练,几乎已经不可能了)。这个对于后续的大模型开发提供了便利,一方面后续的大语言模型可以借助ChatGPT更好的完成数据集收集任务,另一方面ChatGPT成功的经验也为后续其他大模型的数据收集提供了经验。

1.公开的未标记的数据

公开的数据获取方式有很多,ChatGPT的数据获取途径包含了维基百科、BookCorpus,国内的就可以利用微博、百度百科、贴吧、知乎等等收集预训练集。

2.开源的数据集

随着大模型如火如荼的进行,开源的数据集已经越来越多,例如以下等等,当然也可以利用谷歌的Dataset Search进行搜索。

OSCAR(https://oscar-corpus.com)

The Pile(https://pile.eleuther.ai)

PaperswithCode(https://paperswithcode.com)

Hugging Face(https://huggingface.co)

Github(https://github.com)

飞桨(https://aistudio.baidu.com)

3.爬虫收集

在合规的前提下,爬虫收集也可以定向收集到优质的数据集。

图片

按类别划分的数据集分布在数据收集完成之后,需要按照一定的比例对数据集进行混合,数据混合旨在增强模型的泛化能力和抵抗对抗性攻击。

这个过程通常与数据增强结合使用,这有助于减轻过度拟合,提高模型的鲁棒性。在进行混合时,需要为每个样本或特征分配一个权重,这些权重可以是固定的,也可以是随机的,权重的选择方式取决于混合策略和具体任务。例如,对于某些图像分类任务,更高的混合比例可能有助于提高模型的泛化能力,而对于其他任务,适度的混合比例可能就足够了。

混合时也要考虑数据的大小和多样性,如果你的数据集非常庞大,多样性强,那么可以考虑使用较低的混合比例,因为你已经有足够的数据来训练模型。但是如果数据集相对较小,多样性低,增加混合比例可能有助于增加样本数量,减轻过拟合。

图片

添加图片注释,不超过 140 字(可选)

03.数据集预处理

1.数据清洗、过滤、语句边界检测、标准化

大语言模型具有采样效率高的特点,这意味着如果输入模型的数据充满拼写错误的单词、性质粗俗(从网络论坛/聊天室中提取的未经审查的数据通常就是这种情况)、包含大量目标语言之外的其他语言,或者具有不受欢迎的恶作剧特征,那么大模型最终的效果也可想而知。基于此,在对大模型进行训练之前,需要对收集到的数据进行预处理操作,这其中就包含数据清洗、过滤、语句边界检测、标准化。

图片

CCNet可以用于从CommonCraw中提取百余种语言的高质量大规模单语语料库

2.针对训练性能的数据转换

训练机器学习模型时需要对原始数据进行各种处理和转换,以提高模型的性能和泛化能力。这些数据转换的目标是使训练数据更适合于模型的学习和泛化,以及减少模型的过拟风险。例如特征缩放、特征工程、数据清洗、特征选择、数据增强、标签平滑、数据分割等等。

3.分词器训练

分词器是自然语言处理(NLP)中的重要工具,用于将连续的文本序列分解成单个的词汇或标记。分词器的训练是为了使其能够理解不同语言和领域中的文本,并能够准确地划分词汇。下面是关于分词器训练的一些基本知识:

分词器一般分为两种,一种是基于规则的分词器,这些分词器使用预定义的规则来划分文本,例如在空格或标点符号处进行划分。它们通常适用于某些语言的简单分词任务。另一种是基于统计的分词器,这些分词器依赖于大量的文本数据来学习词汇的频率和上下文信息,然后根据统计信息来进行分词。它们通常更适用于复杂的自然语言处理任务。

一般而言,我们构建分词器可以通过sentencepiece(https://github.com/huggingface/tokenizers/issues/203)或者tokenizers(https://huggingface.co/docs/tokenizers/index)框架来构建。

04.大语言模型预训练

在上一篇文章的第一部分,我们大概聊了一下模型的大小与GPU性能对于大模型的影响以及面临的问题,我们也提到了数据并行和模型并行的方法。

使用数据并行性,每个工作人员都有一个完整模型的副本,输入数据集被分割,工作人员定期聚合他们的梯度,以确保所有工作人员都看到权重的一致版本。对于不适合单个GPU的大型模型,数据并行性可以在较小的模型碎片上使用。

通过模型并行性,模型的图层将在多个设备之间共享。当使用相同变压器块的模型时,每个设备可以分配相同数量的变压器层。一个批被分割成更小的微批;然后在微批次之间通过流水线执行。为了精确地保留严格的优化器语义,技术人员引入了周期性的管道刷新,以便优化器步骤能够跨设备同步。

图片

默认的和交错的1F1B管道计划。上图显示了默认的非交错的1F1B计划。

实际上,大模型预训练的过程中需要注意的问题远不是这么简单。分布式训练能够解决小模型的训练问题,但是随着模型的增大,训练数据集规模的增长,数据并行就会出现局限性。当训练资源扩大到一定规模时,就会出现通信瓶颈,计算资源的边际效应显现,增加资源也没办法进行加速,这就是常说的“通信墙”。

除此之外,大模型训练可能还会遇到性能墙的困扰。性能墙是指在某个特定任务或计算资源上,模型的性能无法继续有效提升的情况。当模型接近性能墙时,增加更多的计算资源或数据量可能不会显著改善模型的性能,因为模型已经达到了某种极限或瓶颈。

性能墙通常表现为以下几种情况:

1)训练时间增长:随着模型规模的增大,训练时间也呈现出显著的增长趋势。这是因为更大的模型需要更多的计算资源和时间来收敛,但性能提升可能会递减,最终趋于停滞。

2)资源利用不高:增加更多的计算资源(例如,GPU或TPU)可能会减少训练时间,但利用率不高,因为模型可能无法有效地利用所有资源来提升性能。

那么,什么样的标准才算大模型训练成功呢?

一般我们会通过定量分析和定性分析来回答这个问题。

首先定量分析,我们会观察大模型的训练损失,训练损失的减少表明模型正在学习并拟合训练数据。其次我们会检查大模型的性能指标,对于分类任务,常用的指标包括准确率、精确度、召回率、F1 分数和 ROC-AUC。对于回归任务,常用的指标包括均方误差(MSE)、平均绝对误差(MAE)和 R 平方。

图片

添加图片注释,不超过 140 字(可选)

其次是定性分析,我们通过合并检查点,将多个保存的模型检查点合并为一个单一的统一检查点文件。一旦合并了检查点或选择了特定检查点,我们可以从该检查点加载模型,然后,使用加载的模型生成文本。这时候我们就需要检查生成句子的连贯性、语法、相关性、多样性等,评估句子的生成质量。

另外,我们也通过验证集和测试集的评估来观察大模型的表现,一来观察大模型在处理验证集和测试集时的各项指标,二来观察大模型是否有过拟合的现象出现。

05.任务微调

在大模型进行预训练之后,往往需要对其进行实验和微调处理,实验的作用是检验大模型是否训练成功,这个我们在上一篇文章中已经进行了说明。如果实验结果证明大模型的训练是成功的,那么接下来我们就需要进行微调处理。

微调处理的好处是可以对大模型有针对性的做出训练,例如大模型的侧重点是在情感分析还是在机器翻译?又或者是文本分类?通过微调之后大模型在垂直领域的适应性将会更强,准确率更高。这一过程中,我们通常称之为价值观的对齐,目的就是提高模型的性能、适应性和效率,充分利用大模型的通用知识,并使其更好地适应不同的任务和领域。

大模型的微调方法有多种多样,例如Houlsby N 的 Adapter Tuning,微软的 LoRA,斯坦福的 Prefix-Tuning,谷歌的 Prompt Tuning,清华的 P-tuning v2。

以LoRA为例,LoRA的本质是认为预训练模型拥有极小的内在维度,即存在一个极低维度的参数A和B,微调它和在全参数空间中微调能起到相同的效果。更加专业的解释就是:训练的时候固定预训练语言模型的参数,只训练降维矩阵A与升维矩阵B。而模型的输入输出维度不变,输出时将BA与预训练语言模型的参数叠加。用随机高斯分布初始化A,用0矩阵初始化B。这样能保证训练开始时,新增的通路BA=0,从而对模型结果没有影响。

在推理时,将左右两部分的结果加到一起即可,h=Wx+BAx=(W+BA)x,所以,只要将训练完成的矩阵乘积BA跟原本的权重矩阵W加到一起作为新权重参数替换原始预训练语言模型的W即可,不会增加额外的计算资源。

图片

LORA重新参数化之后,只需要训练A和B

图片

LoRA在性能上优于几种基线方法,而且LoRA所需的可训练参数数量相当或更少。

基于LoRA优秀的微调能力,后来者QLoRA、AdaLoRA和Alpaca-LoRA的技术衍生,进一步加快的微调过程的时间,缩减了成本。QLoRA的论文中这么写道:QLoRA能够将对一个拥有65亿参数的模型进行微调所需的平均内存要求从超过780GB的GPU内存降低到不到48GB,而且与一个16位完全微调的基线相比,不会降低运行时性能或预测性能。这标志着在LLM微调的可访问性方面取得了显著进展:现在,迄今为止最大的公开可用模型可以在单个GPU上进行微调。

使用QLoRA,我们训练了Guanaco系列的模型,第二优的模型在Vicuna基准测试中达到了ChatGPT性能水平的97.8%,而在单个消费级GPU上训练时间不到12小时;而使用单个专业GPU在24小时内,我们的最大模型达到了99.3%,基本上追赶上了Vicuna基准测试中的ChatGPT。

在部署时,我们最小的Guanaco模型(7亿参数)仅需要5GB内存,比一个拥有26GB参数的Alpaca模型在Vicuna基准测试中的表现高出20个百分点以上。

图片

QLoRA对LoRA的升级

后来的Alpaca-LoRA更是离谱,已经有人使用一块 RTX 4090 显卡,只用 5 个小时就训练了一个与 Alpaca 水平相当的模型,将这类模型对算力的需求降到了消费级,还能获得和全模型微调类似的效果。

Alpaca-LoRA Github地址:https://github.com/tloen/alpaca-lora

06.部署

训练过程中需要大量的GPU资源,模型的部署过程中同样需要,以175B的模型为例,不压缩模型的情况下部署需要650GB的内存,这个时候,我们就可以通过模型的缩减和压缩或者采用分布式部署的方式来减轻我们的部署压力。

如何学习AI大模型?

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

在这里插入图片描述

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1701687.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

react-d3-tree:React组件创建交互式D3树形图

在这里插入代码片import React from "react"; import ReactDOM from "react-dom"; import Tree from "react-d3-tree";import "./styles.css";const myTreeData [{name: "Gaurang Torvekar",attributes: {keyA: "val …

基础7 探索JAVA图形编程桌面:数据库操作组件详解

在当今这个全面以数字化占据主导地位的时代,图形化编程犹如一颗冉冉升起的新星,逐渐在编程领域中崭露头角,并且正逐步成为一种全新的趋势。其具备的直观性以及易上手的显著特性,使得数量愈发庞大的开发者以及业务人员能够以更为快…

ENVI6.0试用版(180天)详细安装教程,附安装包链接和一些常见问题

ENVI6.0试用版(180天)详细安装教程,附安装包链接和一些常见问题 文章目录 ENVI6.0试用版(180天)详细安装教程,附安装包链接和一些常见问题前言环境来源安装激活问题 前言 如标题所示,这个只是试…

文本三剑客之 sed 编辑器

一.sed 概述 1.sed 介绍 sed是一种流编辑器,流编辑器会在编辑器处理数据之前基于预先提供的一组规则来编辑数据流。 sed编辑器可以根据命令来处理数据流中的数据,这些命令要么从命令行中输入,要么存储在一个 命令文本文件中。 2.sed 的工…

基于51单片机的电压表设计—0~5V

基于51单片机的电压表设计 (仿真+程序+原理图+设计报告) 功能介绍 具体功能: 1.ADC0832模数转换芯片实现电压的测量; 2.测量电压精确到0.01V; 3.测量范围默认是0~5v;…

汽车合面合壳密封UV胶固化后能持续多久密封呢?汽车车灯的灯罩如果破损破裂破洞了要怎么修复?

汽车合面合壳密封UV胶固化后能持续多久密封呢? UV胶在汽车合面合壳密封后的持久性取决于多种因素,包括UV胶的配方、环境条件、应力和使用情况等。一般而言,UV胶固化后的密封性能可以持续数年,我们可以从以下几个方面进行归纳&…

长难句打卡5.27

In fact, allowing non-lawyers to own shares in law firms would reduce costs and improve services to customers, by encouraging law firms to use technology and to employ professional managers to focus on improving firms’efficiency. 事实上,这通过…

AI日报|阿里8亿美元购入月之暗面36%股份,Meta首席杨立昆建议不要研究大模型...

文章推荐 阿里通义降价,百度文心免费,一图对比谁是最具性价比大模型? 阿里投资Kimi AI开发商月之暗面:8亿美元购入约36%股权 阿里巴巴在2024财年向AI初创企业月之暗面投资约8亿美元,购入其约36%股权。 月之暗面成立…

山东籍当代文化名人颜廷利起名大师的故事背景和历史背景

山东籍当代文化名人颜廷利起名大师的故事背景和历史背景 在当代中国文化界,全国排名第一是起名大师颜廷利教授的名字犹如一座学术高峰,其影响力横跨海内外。身为一位深受全球华人尊崇的学者,他的思想与教诲在国际间播撒着智慧的种子&#xff…

苹果WWDC 2024或将推出AI生成的表情符号并宣布与OpenAI的合作|TodayAI

苹果正在为即将到来的WWDC(全球开发者大会)做准备,并将展示其生成式AI技术。根据Mark Gurman在Bloomberg的《Power On》通讯中的报道,苹果将在2024年的WWDC上讲述自己的AI故事,但这可能不会像Google、Microsoft或OpenA…

全球前五!ATFX 2024年Q1业绩狂飙,6240亿美元交易量彰显实力

5月,密集发布的报告显示,强者恒强是差价合约行业不变的竞争逻辑。而ATFX最新展现的业绩无疑是这一逻辑的有力例证。依照惯例,知名行业媒体Finance Magnates日前公布了全球经纪商最为关注的2024年第一季度行业报告。报告数据显示,A…

智慧校园建设规划方案

在信息化浪潮的推动下,智慧校园的建设已成为教育现代化的必然趋势。以创新科技赋能教育,打造智慧校园,旨在提升教学品质,优化管理流程,增强学生体验。构建智慧校园需要具有前瞻性的规划方案,它将以教育为核…

LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]

LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架] 训练后的模型会用于推理或者部署。推理即使用模型用输入获得输出的过程,部署是将模型发布到恒定…

用友电子凭证解决方案,加速企业电子凭证全链路管理

2023年,财政部等9部委联合推进电子凭证数据标准及试点工作,目前逐步扩大试点范围,覆盖市场应用高频的9类凭证。2024年,财政部办公厅发布了《关于继续开展电子凭证会计数据标准深化试点工作的通知》对电子凭证进行全流程常态化处理…

google浏览器下载和相应驱动下载

1、chromedriver 115及115之后版本下载地址: https://googlechromelabs.github.io/chrome-for-testing/ 2、chromedriver 115之前版本下载地址(已停止更新115及之后版本): http://chromedriver.storage.googleapis.com/index.html…

前端开发工程师——数据可视化

canvas canvas绘制线段 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthd…

数据结构(五)队列

文章目录 一、概念二、逻辑结构&#xff1a;线性结构三、存储结构&#xff08;一&#xff09;顺序队列&#xff08;二&#xff09;循环队列1. 结构体定义2. 创建队列&#xff08;1&#xff09;函数定义&#xff08;2&#xff09;注意点&#xff08;3&#xff09;代码实现 3. 入…

抖音小店三种快速出体验分的方式,看看你想要去做哪一种?

大家好&#xff0c;我是电商小V 很多小伙伴开的新店都是没有体验分的&#xff0c;大家都知道起店的第一步就是先要出分&#xff0c;后期的话自己店铺的体验分越高&#xff0c;那么店铺的权重就越大&#xff0c;你的商品就会进入自然流量池&#xff0c;那么系统给你推荐的流量就…

echarts图表英文状态下图标的横向坐标轴显示中文

解决方法&#xff1a; 初始化图表时传入ZH(中文&#xff09;EN(英文)const locale ENinitChart() {this.chart echarts.init(this.$refs.chart, null, {locale: locale ,});this.setOptions();},

如何解决图纸加密的痛点

在当今信息高度发达的时代&#xff0c;图纸作为工程设计、制造、施工等领域的重要载体&#xff0c;其安全性显得尤为关键。然而&#xff0c;图纸加密却常常面临着诸多痛点&#xff0c;这些痛点不仅影响了企业的数据安全&#xff0c;也制约了行业的健康发展。 图纸加密的复杂性是…