大模型应用之基于Langchain的测试用例生成

news2024/9/25 13:23:37

一 用例生成实践效果

组内的日常工作安排中,持续优化测试技术、提高测试效率始终是重点任务。近期,我们在探索实践使用大模型生成测试用例,期望能够借助其强大的自然语言处理能力,自动化地生成更全面和高质量的测试用例。

当前,公司已经普及使用JoyCoder,我们可以拷贝相关需求及设计文档的信息给到JoyCoder,让其生成测试用例,但在使用过程中有以下痛点:

1)仍需要多步人工操作:如复制粘贴文档,编写提示词,拷贝结果,保存用例等

2)响应时间久,结果不稳定:当需求或设计文档内容较大时,提示词太长或超出token限制

因此,我探索了基于Langchain与公司的提供的网关接口使测试用例可以自动、快速、稳定生成的方法,效果如下:

用例生成效果对比使用JoyCoder(GPT4)基于Langchain自研(GPT4)
生成时长 (针对项目--文档内容较多)·10~20分钟左右,需要多次人工操作 (先会有一个提示:根据您提供的需求文档,下面是一个Markdown格式的测试用例示例。由于文档内容比较多,我将提供一个概括性的测试用例模板,您可以根据实际需求进一步细化每个步骤。) ·内容太多时,报错:The maximum default token limit has been reached、UNKNOWN ERROR:Request timed out. This may be due to the server being overloaded,需要人工尝试输入多少内容合适·5分钟左右自动生成 (通过摘要生成全部测试点后,再通过向量搜索的方式生成需要细化的用例) ·内容太多时,可根据token文本切割后再提供给大模型
生成时长 (针对普通小需求)差别不大,1~5分钟
准确度依赖提示词内容,差别不大,但自研时更方便给优化好的提示词固化下来

(什么是LangChain? 它是一个开源框架,用于构建基于大型语言模型(LLM)的应用程序。LLM 是基于大量数据预先训练的大型深度学习模型,可以生成对用户查询的响应,例如回答问题或根据基于文本的提示创建图像。LangChain 提供各种工具和抽象,以提高模型生成的信息的定制性、准确性和相关性。例如,开发人员可以使用 LangChain 组件来构建新的提示链或自定义现有模板。LangChain 还包括一些组件,可让 LLM 无需重新训练即可访问新的数据集。)

二 细节介绍

1 基于Langchain的测试用例生成方案

方案优点缺点适用场景
方案1:将全部产品需求和研发设计文档给到大模型,自动生成用例用例内容相对准确不支持特大文档,容易超出token限制普通规模的需求及设计
方案2:将全部产品需求和研发设计文档进行摘要后,将摘要信息给到大模型,自动生成用例进行摘要后无需担心token问题用例内容不准确,大部分都只能是概况性的点特大规模的需求及设计
方案3:将全部产品需求和研发设计文档存入向量数据库,通过搜索相似内容,自动生成某一部分的测试用例用例内容更聚焦 无需担心token问题不是全面的用例仅对需求及设计中的某一部分进行用例生成

因3种方案使用场景不同,优缺点也可互补,故当前我将3种方式都实现了,提供大家按需调用。

2 实现细节

2.1 整体流程





2.2 技术细节说明

pdf内容解析: :Langchain支持多种文件格式的解析,如csv、json、html、pdf等,而pdf又有很多不同的库可以使用,本次我选择PyMuPDF,它以功能全面且处理速度快为优势



文件切割处理:为了防止一次传入内容过多,容易导致大模型响应时间久或超出token限制,利用Langchain的文本切割器,将文件分为各个小文本的列表形式



Memory的使用:大多数 LLM 模型都有一个会话接口,当我们使用接口调用大模型能力时,每一次的调用都是新的一次会话。如果我们想和大模型进行多轮的对话,而不必每次重复之前的上下文时,就需要一个Memory来记忆我们之前的对话内容。Memory就是这样的一个模块,来帮助开发者可以快速的构建自己的应用“记忆”。本次我使用Langchain的ConversationBufferMemory与ConversationSummaryBufferMemory来实现,将需求文档和设计文档内容直接存入Memory,可减少与大模型问答的次数(减少大模型网关调用次数),提高整体用例文件生成的速度。ConversationSummaryBufferMemory主要是用在提取“摘要”信息的部分,它可以将将需求文档和设计文档内容进行归纳性总结后,再传给大模型



向量数据库:利用公司已有的向量数据库测试环境Vearch,将文件存入。 在创建数据表时,需要了解向量数据库的检索模型及其对应的参数,目前支持六种类型,IVFPQ,HNSW,GPU,IVFFLAT,BINARYIVF,FLAT(详细区别和参数可点此链接),目前我选择了较为基础的IVFFLAT--基于量化的索引,后续如果数据量太大或者需要处理图数据时再优化。另外Langchain也有很方便的vearch存储和查询的方法可以使用



2.3 代码框架及部分代码展示

代码框架:





代码示例:

    def case_gen(prd_file_path, tdd_file_path, input_prompt, case_name):
        """
        用例生成的方法
        参数:
        prd_file_path - prd文档路径
        tdd_file_path - 技术设计文档路径
        case_name - 待生成的测试用例名称
        """
        # 解析需求、设计相关文档, 输出的是document列表
        prd_file = PDFParse(prd_file_path).load_pymupdf_split()
        tdd_file = PDFParse(tdd_file_path).load_pymupdf_split()
        empty_case = FilePath.read_file(FilePath.empty_case)

        # 将需求、设计相关文档设置给memory作为llm的记忆信息
        prompt = ChatPromptTemplate.from_messages(
            [
                SystemMessage(
                    content="You are a chatbot having a conversation with a human."
                ),  # The persistent system prompt
                MessagesPlaceholder(
                    variable_name="chat_history"
                ),  # Where the memory will be stored.
                HumanMessagePromptTemplate.from_template(
                    "{human_input}"
                ),  # Where the human input will injected
            ]
        )
        memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
        for prd in prd_file:
            memory.save_context({"input": prd.page_content}, {"output": "这是一段需求文档,后续输出测试用例需要"})
        for tdd in tdd_file:
            memory.save_context({"input": tdd.page_content}, {"output": "这是一段技术设计文档,后续输出测试用例需要"})

        # 调大模型生成测试用例
        llm = LLMFactory.get_openai_factory().get_chat_llm()
        human_input = "作为软件测试开发专家,请根据以上的产品需求及技术设计信息," + input_prompt + ",以markdown格式输出测试用例,用例模版是" + empty_case
        chain = LLMChain(
            llm=llm,
            prompt=prompt,
            verbose=True,
            memory=memory,
        )
        output_raw = chain.invoke({'human_input': human_input})

        # 保存输出的用例内容,markdown格式
        file_path = FilePath.out_file + case_name + ".md"
        with open(file_path, 'w') as file:
            file.write(output_raw.get('text'))

    def case_gen_by_vector(prd_file_path, tdd_file_path, input_prompt, table_name, case_name):
        """
        !!!当文本超级大时,防止token不够,通过向量数据库,搜出某一部分的内容,生成局部的测试用例,细节更准确一些!!!
        参数:
        prd_file_path - prd文档路径
        tdd_file_path - 技术设计文档路径
        table_name - 向量数据库的表名,分业务存储,一般使用业务英文唯一标识的简称
        case_name - 待生成的测试用例名称
        """
        # 解析需求、设计相关文档, 输出的是document列表
        prd_file = PDFParse(prd_file_path).load_pymupdf_split()
        tdd_file = PDFParse(tdd_file_path).load_pymupdf_split()
        empty_case = FilePath.read_file(FilePath.empty_case)
        # 把文档存入向量数据库
        docs = prd_file + tdd_file
        embedding_model = LLMFactory.get_openai_factory().get_embedding()
        router_url = ConfigParse(FilePath.config_file_path).get_vearch_router_server()
        vearch_cluster = Vearch.from_documents(
            docs,
            embedding_model,
            path_or_url=router_url,
            db_name="y_test_qa",
            table_name=table_name,
            flag=1,
        )
        # 从向量数据库搜索相关内容
        docs = vearch_cluster.similarity_search(query=input_prompt, k=1)
        content = docs[0].page_content

        # 使用向量查询的相关信息给大模型生成用例
        prompt_template = "作为软件测试开发专家,请根据产品需求技术设计中{input_prompt}的相关信息:{content},以markdown格式输出测试用例,用例模版是:{empty_case}"
        prompt = PromptTemplate(
            input_variables=["input_prompt", "content", "empty_case"],
            template=prompt_template
        )
        llm = LLMFactory.get_openai_factory().get_chat_llm()
        chain = LLMChain(
            llm=llm,
            prompt=prompt,
            verbose=True
        )
        output_raw = chain.invoke(
            {'input_prompt': input_prompt, 'content': content, 'empty_case': empty_case})
        # 保存输出的用例内容,markdown格式
        file_path = FilePath.out_file + case_name + ".md"
        with open(file_path, 'w') as file:
            file.write(output_raw.get('text'))




三 效果展示

3.1 实际运用到需求/项目的效果

用例生成后是否真的能帮助我们节省用例设计的时间,是大家重点关注的,因此我随机在一个小型需求中进行了实验,此需求的PRD文档总字数2363,设计文档总字数158(因大部分是流程图),结果如下:

用例设计环节,测试时间(人日)占用效果分析可自动生成用例之前可自动生成用例之后
分析需求&理解技术设计0.50.25
与产研确认细节0.250.25
设计及编写用例1(39例)0.5(45例=25例自动生成+20例人工修正/补充)
评审及用例差缺补漏0.50.25
总计(效率提升50%2.5人日1.25人日

本次利用大模型自动生成用例的优缺点:

优势:

•全面快速的进行了用例的逻辑点划分,协助测试分析理解需求及设计

•降低编写测试用例的时间,人工只需要进行内容确认和细节调整

•用例内容更加全面丰富,在用例评审时,待补充的点变少了,且可以有效防止漏测

•如测试人员仅负责一部分功能的测试,也可通过向量数据库搜索的形式,聚焦部分功能的生成

劣势:

•暂时没实现对流程图的理解,当文本描述较少时,生成内容有偏差

•对于有丰富经验的测试人员,自动生成用例的思路可能与自己习惯的思路不一致,需要自己再调整或适应



四 待解决问题及后续计划

1.对于pdf中的流程图(图片形式),实现了文字提取识别(langchain pdf相关的方法支持了ocr识别),后续需要找到更适合解决图内容的解析、检索的方式。

2.生成用例只是测试提效的一小部分,后续需要尝试将大模型应用与日常测试过程,目前的想法有针对diff代码和服务器日志的分析来自动定位缺陷、基于模型驱动测试结合知识图谱实现的自动化测试等方向。



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1701050.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MIC工作原理(驻极体麦克风)

1.驻极体麦克风声电转换原理 如图所示,驻极体麦克风属于电容式麦克风,背极板和振膜构成平板版电容器,背极板驻有一定量的电荷,背极板通过金属环连接到FET的栅极;振膜镀层金属,通过金属外壳连接到FET的S极&…

社区矫正程序管理端和小程序(支持人脸识别)

社区矫正作为我国刑事处罚执行方式中独特的种类,从2003年进行试点至今已有近20年的时间,在罪犯改造方面取得了突出成就,在法治国家建设过程中具有十分重要的意义。相较于监狱内服刑的执行方式,社区矫正更加侧重于对服刑人员进行教…

常见web安全漏洞

一、信息泄露 概念 信息泄露是由于Web服务器或应用程序没有正确处理一些特殊请求,泄露Web服务器的一些敏感信 息,如用户名、密码、源代码、服务器信息、配置信息等。 造成信息泄露主要的三个原因: ①Web服务器配置存在问题,导致一些系统…

最详细Linux提权总结(建议收藏)

1、内核漏洞脏牛提权 查看内核版本信息 uname -a 具体提权 1、信息收集配合kali提权 uname -a #查看内核版本信息 内核版本为3.2.78,那我们可以搜索该版本漏洞 searchsploit linux 3.2.78 找到几个可以使用的脏牛提权脚本,这里我使用的是40839.c脚…

锐捷网络与您相约第七届数字中国建设峰会 共话数字未来

第七届数字中国建设峰会将于5月24日至25日在福建福州举办,本届峰会是国家数据工作体系优化调整后首次举办的数字中国建设峰会,主题是“释放数据要素价值,发展新质生产力”。作为行业领先的ICT基础设施及解决方案提供商,锐捷网络与福建省电子信息集团、星网锐捷,围绕“发展新质生…

SpringBoot——发送HTML格式的邮件

目录 项目总结 新建一个SpringBoot项目 pom.xml application.properties配置文件 EmailService服务类 SpringbootMailHtmlApplicationTests测试类 项目总结 在SpringBoot项目中发送HTML格式的邮件的思路: 添加依赖:在项目中添加spring-boot-starte…

Android消息机制回顾(Handler、Looper、MessageQueue源码解析)

回顾: Android消息机制 Android消息机制主要指的是Handler的运行机制以及Handler所附带的MessageQueue和Looper的工作机制。 介绍 通过Handler 消息机制来解决线程之间通信问题,或者用来切换线程。特别是在更新UI界面时,确保了线程间的数…

20232937文兆宇 2023-2024-2 《网络攻防实践》实践十一报告

20232937文兆宇 2023-2024-2 《网络攻防实践》实践十一报告 1.实践内容 木马是一种带有恶意性质的远程控制软件。木马一般分为客户端和服务器端,客户端是本地使用的各种命令的控制台,而服务器端则是要给别人运行,只有运行过服务器端的计算机…

工具:Visual Studio Code

一、VSCode生成exe 二、在vs中断点调试 如果没效果需要安装如下与unity相连接的插件 三、注释 1、代码注释 注释和取消都是都是同一个命令:选中代码,然后按住CtrlShift/ 2、方法或类注释 /// 四、导航 五、将变量注释展示到解释面板 1、直接显示 [Too…

YOLOv8: RuntimeError: DataLoader worker (pid(s) xxxxx) exited unexpectedly

遇到错误: 一、 raise RuntimeError(DataLoader worker (pid(s) {}) exited unexpectedly.format(pids_str)) RuntimeError: DataLoader worker (pid(s) 4252, 17184) exited unexpectedly二、OSError: [WinError 1455] 页面文件太小,无法完成操作。 处…

有趣的css - 水波纹按钮

大家好,我是 Just,这里是「设计师工作日常」,今天分享的是一个好看有质感的水波纹按钮。 最新文章通过公众号「设计师工作日常」发布。 目录 整体效果核心代码html 代码css 部分代码 完整代码如下html 页面css 样式页面渲染效果 整体效果 &a…

【C++语言】继承:类特性的扩展,重要的类复用!

【C语言】继承,更进一步的复用 ✨精美思维导图奉上继承1. 继承的相关概念:2. 继承的定义:(1)定义格式:(2)访问限定符和继承方式:(3)默认继承方式&…

取代或转型?人工智能对软件测试的影响(内附工具推荐)

在当今快速发展的数字环境中,从移动App到基于Web的平台,软件已成为我们日常生活和工作不可或缺的一部分。然而,随着软件系统变得越来越复杂,如何确保其质量和可靠性已成为开发人员和测试人员所面临的一大重要挑战。 这就是软件测…

强化学习,第 3 部分:蒙特卡罗方法

文章目录 一、介绍二、关于此文章三、无模型方法与基于模型的方法四、V函数估计4.1 基本概念4.2 V-功能 五、Q 函数估计5.1 V函数概念5.2 优势5.3 Q函数 六、勘探与勘探的权衡七、结论 一、介绍 从赌场到人工智能:揭示蒙特卡罗方法在复杂环境中的强大功能    强化…

生命在于学习——Python人工智能原理(2.1)

二、机器学习 1、机器学习的定义 机器学习是指从有限的观测数据中学习出具有一般性的规律,并利用这些规律对未知数据进行预测的方法,通俗的讲,机器学习就是让计算机从数据中进行自动学习,得到某种知识。 传统的机器学习主要关注…

深度强化学习 Actor-Critic演员评论家 PPO

将策略(Policy Based)和价值(Value Based)相结合的方法:Actor-Critic算法,在强化学习领域最受欢迎的A3C算法,DDPG算法,PPO算法等都是AC框架。 一、Actor-Critic算法简介 Actor-Critic从名字上看包括两部分,演员(Actor…

Geoserver发布shp图层服务的样式控制及样式生成方式

在利用geoserver发布视频图层服务时,shp图层的样式可以在QGis文件中进行编辑;shp文件编辑后,需要导出样式文件,并在geoserver中进行注册,发布时对应shp图层文件时,需要选中对应样式,加载图层服务…

WorkPlus移动应用平台集成单点登录,实现统一门户解决方案

随着企业数字化转型的深入,移动办公已经成为企业提高工作效率和员工协作的重要途径。为了更好地管理企业移动应用,提升员工体验,简化登录流程,许多企业开始采用集成单点登录技术的企业移动应用平台,实现统一门户的目标…

实验室课程|基于SprinBoot+vue的实验室课程管理系统(源码+数据库+文档)

实验室课程管理系统 目录 基于SprinBootvue的实验室课程管理系统 一、前言 二、系统设计 三、系统功能设计 1管理员功能模块 2学生功能模块 3教师功能模块 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介…

PMP考试通关秘籍

考试大纲 考试大纲:考察维度3 个(人、过程、商业环境);更加贴近真实项目趋势;侧重点从做事到关注人;对于项目经理的软技能要求更高,匹配 PM 能力模型。 人员(42%)&…