生命在于学习——Python人工智能原理(2.1)

news2024/11/15 17:39:12

在这里插入图片描述

二、机器学习

1、机器学习的定义

机器学习是指从有限的观测数据中学习出具有一般性的规律,并利用这些规律对未知数据进行预测的方法,通俗的讲,机器学习就是让计算机从数据中进行自动学习,得到某种知识。
传统的机器学习主要关注如何学习一个预测模型,一般需要首先将数据表示为一组特征,特征的表示形式可以是连续的数值、离散的符号或其他形式,然后将这些特征输入到预测模型,并输出预测结果。

2、机器学习的步骤

当我们用机器学习来解决实际任务时,会面对多种多样的数据形式,比如声音、图像、文本等,不同数据的特征构造方式差异很大,对于图像这类数据,我们可以很自然的将其表示为一个连续的向量,而对于文本数据,因为其一般由离散符号组成,并且每个符号在计算机内部都表示为无异议的编码,所以通常很难找到合适的表示方式,所以在实际任务中使用机器学习模型一般会包含以下几个步骤:
在这里插入图片描述

(1)原始数据-数据预处理

经过数据的预处理,如去除噪声。

(2)特征提取

从原始数据中提取一些有效的特征,比如在图像分类中,提取边缘、尺度不变特征变换特征等。

(3)特征转换

对特征进行一定的加工,比如降维和升维,降维包括特证抽取和特征选择两种途径,常用的特征转换方法有主成分分析、现行判别分析等。

(4)预测-结果

机器学习的核心部分,学习一个函数并进行预测。

3、机器学习的特点

在这里插入图片描述

在一些复杂任务中,传统机器学习方法需要将一个任务的输入和输出之间人为的切割成很多子模块,每个子模块分开学习,比如一个自然语言理解人物,一般需要分词、词性标注、句法分析、语义分析、语义推理等步骤。
这种学习方式有两个问题,一是每个模块都需要单独优化,并且其优化目标和任务总体目标并不能保证一致。二是错误传播,即前一步的错误会对后续的模型造成很大的影响,这样就增加了机器学习方法在实际应用中的难度。
机器学习的每步特征处理以及预测一般都是分开进行的,传统的机器学习模型主要关注最后一步,即构建预测函数,但是实际操作过程中,不同预测模型的性能差不多,而前三步中的特征处理对最终系统的准确性有着十分关键的作用。
特征处理一般都需要人工干预完成利用人类的经验来选取好的特征,并最终提高机器学习系统的性能,因此,很多的机器学习问题变成了特征工程问题。

4、机器学习的相关名词

在这里插入图片描述

如果选取一些苹果。

(1)特征

包括颜色、大小、形状、产地、品牌。

(2)标签

标签可以是连续值,比如苹果的甜度、水分和成熟地。
标签也可以是炼制,比如好坏。

(3)样本

将标记好特征以及标签的苹果看作一个样本,也可以称为示例

(4)数据集

一组样本构成的集合称为数据集,一般将数据集分为两部分:训练集测试集。训练集中的样本是用来训练模型的,也叫训练样本,测试集中的样本是用来检验模型好坏的,也叫测试样本

(5)特征向量

我们通常使用一个D维向量x=[x1,x2,x3,…,xD]表示一个苹果所有特征构成的向量,称为特征向量,其中每一维表示一个特征,而苹果的标签通常用向量y表示。
假设训练集D由N个样本组成,其中每个样本都是独立同分布的,即独立的从相同的数据分布中抽取的,记为:
D={(x(1),y(1)),(x(2),y(2)),…,(x(n),y(n))}
给定训练集D,我们希望让计算机从一个函数集合F={f1(x)f2(x),…}中自动寻找一个最优的函数f*(x)来近似每个样本的特征向量x和标签y之间的真实映射关系。
如何寻找这个最优的函数f*(x)是机器学习的关键,一般需要通过学习算法来完成,这个寻找过程通常称为学习或训练过程。

5、机器学习的算法分类

在这里插入图片描述

按照训练样本提供的信息以及反馈方式的不同,将机器学习算法分为以下几类:

(1)监督学习

如果机器学习的目标是建模样本的特征x和标签y之间的关系,并且训练集中每个样本都有标签,你们这类机器学习称为监督学习,根据标签类型的不同,监督学习又可以分为回归问题、分类问题和结构化学习问题

a、回归

这类问题中的标签u是连续值,实数或连续整数,输出也是连续值。

b、分类

这类问题中的标签y是离散的类别,在分类问题中,学习到的模型也称为分类器。分类问题根据其类别数量又可以分为二分类和多分类问题。

c、结构化学习

此类问题是一种特殊的分类问题,在结构化学习中,标签y通常是结构化的对象,比如序列、数或图,由于结构化学习的输出空间比较大,因此我们一般定义一个联合特征空间,将x、y映射为该空间中的联合特征向量。

(2)无监督学习

是指从不包含目标标签的训练样本中自动学习到一些有价值的信息,典型的无监督学习问题有聚类、密度估计、特征学习、降维等。

(3)强化学习

是一类通过交互来学习的机器学习算法,在强化学习中,智能体根据环境的状态做出一个动作,并得到即时或延时的奖励。智能体在和环境的交互中不断学习并调整策略,以取得最大化的期望总回报。
监督学习需要每个样本都有标签,而无监督学习则不需要标签,一般而言,监督学习通常需要大量的有标签数据集,这些数据集一般都需要由人工进行标注,成本很高,所以也出现了很多弱监督学习和半监督学习的方法,希望从大规模的无标注数据中充分挖掘有用的信息,降低对标注样本数量的要求。
强化学习和监督学习的不同在于,强化学习不需要显式的以“输入/输出对”的方式给出训练样本,是一种在线的学习机制。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1701024.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度强化学习 Actor-Critic演员评论家 PPO

将策略(Policy Based)和价值(Value Based)相结合的方法:Actor-Critic算法,在强化学习领域最受欢迎的A3C算法,DDPG算法,PPO算法等都是AC框架。 一、Actor-Critic算法简介 Actor-Critic从名字上看包括两部分,演员(Actor…

Geoserver发布shp图层服务的样式控制及样式生成方式

在利用geoserver发布视频图层服务时,shp图层的样式可以在QGis文件中进行编辑;shp文件编辑后,需要导出样式文件,并在geoserver中进行注册,发布时对应shp图层文件时,需要选中对应样式,加载图层服务…

WorkPlus移动应用平台集成单点登录,实现统一门户解决方案

随着企业数字化转型的深入,移动办公已经成为企业提高工作效率和员工协作的重要途径。为了更好地管理企业移动应用,提升员工体验,简化登录流程,许多企业开始采用集成单点登录技术的企业移动应用平台,实现统一门户的目标…

实验室课程|基于SprinBoot+vue的实验室课程管理系统(源码+数据库+文档)

实验室课程管理系统 目录 基于SprinBootvue的实验室课程管理系统 一、前言 二、系统设计 三、系统功能设计 1管理员功能模块 2学生功能模块 3教师功能模块 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介…

PMP考试通关秘籍

考试大纲 考试大纲:考察维度3 个(人、过程、商业环境);更加贴近真实项目趋势;侧重点从做事到关注人;对于项目经理的软技能要求更高,匹配 PM 能力模型。 人员(42%)&…

55页PDF|人工智能通用大模型(ChatGPT)的进展、风险与应对(附下载)

👉获取方式: 😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

3D技术的应用领域

3D技术在现代科技和工业中有广泛的应用,其涵盖的领域非常广泛,从娱乐到医学,再到制造业和建筑,3D技术正在改变我们理解和互动的方式。以下是一些主要的应用领域。北京木奇移动技术有限公司,专业的软件外包开发公司&…

k8s devops实战教程+生产实践+可就业

k8s devops实战教程 简介教程涉及到内容教程获取学习教程后的收货助学群 简介 越来越多的企业应用云原生化,催生很多应用的部署方式也发生了很多变化。 从物理机部署应用过度到虚机部署应用再到应用容器化,从单应用再到服务拆分为微服务,靠人…

linux查看是否被入侵(一)

1、查看当前系统状态 [rootbastion-IDC ~]#top #一般挖矿等病毒点用CPU比较大 2、查看当前登录用户(w\who) 3、检查系统日志 检查系统错误登陆日志,统计IP重试次数 [rootbastion-IDC ~]# lastb 4、查看近期用户登录情况 [rootkvm01 ~]# last -n 5 #-n 5 表示…

element el-table表格表头某一列表头文字或者背景修改颜色

效果如下 整体代码 &#xff0c;具体方法在最下面&#xff01; <el-table v-loading"listLoading" :data"sendReceivList" element-loading-text"Loading" border fit ref"tableList" :header-cell-class-name"addClass&quo…

揭秘APP广告变现的高效秘诀:如何让你的APP更赚钱?

在数字化时代&#xff0c;APP已成为人们获取信息、娱乐休闲的重要平台。对于许多内容创作者来说&#xff0c;如何通过APP实现盈利&#xff0c;是一个亟待解决的问题。而APP广告变现项目&#xff0c;正是其中一种备受关注的盈利模式。那么&#xff0c;如何有效地利用APP广告变现…

安泰电子:功率放大器的选择方法有哪些

选择适合的功率放大器是实现电子系统中的关键步骤之一。以下是一些选择功率放大器的常用方法和考虑因素&#xff1a; 功率需求&#xff1a;首先确定你的系统需要多大的功率输出。功率输出需求通常由被驱动设备的功率要求决定。计算出所需功率后&#xff0c;选择一个具有适当功率…

绿色阅读:旧书回收,让知识循环

在快节奏的现代社会中&#xff0c;知识的获取和更新速度日新月异。然而&#xff0c;在这个信息爆炸的时代&#xff0c;我们是否曾想过&#xff0c;那些曾经陪伴我们度过无数日夜、给予我们智慧和启迪的旧书&#xff0c;在它们完成使命后&#xff0c;是否应该被遗忘在角落&#…

IdentiFace——多模态人脸识别系统,可捕捉从情绪到性别的所有信息及其潜力

1. 概述 面部识别系统的开发极大地推动了计算机视觉领域的发展。如今&#xff0c;人们正在积极开发多模态系统&#xff0c;将多种生物识别特征高效、有效地结合起来。 本文介绍了一种名为 IdentiFace 的多模态人脸识别系统。该系统利用基于 VGG-16 架构的模型&#xff0c;将人…

Go 语言安装部署(超详细版本)

在学习和使用 Go 语言时&#xff0c;正确的安装和配置是非常重要的一步。本文将介绍如何在不同操作系统上安装 Go 语言&#xff0c;并讨论一些常见的配置选项&#xff0c;帮助读者更好地了解和使用 Go 语言。无论是初学者还是有一定经验的开发者&#xff0c;都能从本文中获得有…

buuctf-相册

题目提示找到邮箱 下载是一个apk文件 他都不建议安装到手机了 我还是不找麻烦动调了吧 他说是mail,那行吧 找mail 找到就是这一段 base64 s3 notebook 这里可以看见加载了native库 所以要IDA 打开so文件 apk就是一个压缩包,直接解压就行 lib里面就有so文件 再根据熟知的…

深度剖析整型和浮点型数据在内存中的存储(C语言)

目录 整型在内存中的存储 为什么整型在内存中存储的是补码&#xff1f; 大小端字节序 为什么有大端小端&#xff1f; 浮点型家族 浮点数在内存中的存储 long long 整型在内存中的存储 整型在内存中有三种二进制表示形式&#xff1a;原码&#xff0c;反码&#xff0c;补码…

网站笔记:huggingface model memory calculator

Model Memory Utility - a Hugging Face Space by hf-accelerate 这个工具可以计算在 Hugging Face Hub上托管的大型模型训练和执行推理时所需的vRAM内存量。模型所需的最低推荐vRAM内存量表示为“最大层”的大小&#xff0c;模型的训练大约是其大小的4倍&#xff08;针对Adam…

Python-3.12.0文档解读-内置函数id()详细说明+记忆策略+常用场景+巧妙用法+综合技巧

一个认为一切根源都是“自己不够强”的INTJ 个人主页&#xff1a;用哲学编程-CSDN博客专栏&#xff1a;每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 详细说明 概述 参数 返回值 特性 实现细节&#xff08;CPython&#xff09; 安全…

M-G370PDG惯性测量单元,可实时监测天线的姿态和位置变化

动中通天线系统通常包括天线、卫星信号跟踪器、调制解调器、电源管理单元和用户终端设备等部分。其中&#xff0c;天线是系统的关键部件&#xff0c;负责接收和发送卫星信号。随着移动载体的运动&#xff0c;天线需要实时调整方向&#xff0c;以保持与卫星的稳定连接。卫星信号…