毕设 大数据校园卡数据分析

news2024/11/15 8:04:10

文章目录

  • 0 前言
  • 1 课题介绍
  • 2 数据预处理
    • 2.1 数据清洗
    • 2.2 数据规约
  • 3 模型建立和分析
    • 3.1 不同专业、性别的学生与消费能力的关系
    • 3.2 消费时间的特征分析
  • 4 Web系统效果展示
  • 5 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 基于yolov5的深度学习车牌识别系统实现

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 选题指导, 项目分享:见文末



1 课题介绍

近年来,大数据的受关注程度越来越高。如何对大数据流进行抽取转换成有用的信息并应用于各行各业变得越来越重要。如今,校园一卡通系统在高校应用十分广泛,大部分高校主要利用校园一卡通对校园中的各类消费阅、补助领取等进行统一管理。通过数据分析算法,对大学生校内消费记录进行整理、分类、预测,从而整体反应学生在校消费情况,形成量化的评判标准,同时也为今后的贫困生资助管理工作提供可靠的数据支持,辅助完成贫困生的相关工作。


2 数据预处理

在进行数据挖掘或者数据分析之前,需要对“脏数据” 数据进行数据预处理,一般采用数据清理、数据集成、数据变换等方式,已获得更好的分析效果。


2.1 数据清洗

由于数据库中有着大量的数据表,我们获取到的数据表中会存在着异常数据,如数据不合法与常识不符,同一个字段属性值来源于多张数据表且数值不一样等。数据预处理主要去处可忽略的字段、忽略空缺记录、可处理噪声的数据、可删除的数据等。由于部分校园卡用户,如教职工、研究生等,消费时具有很强的随机性和离散型。同时,为了保护隐私,对姓名、学号等属性要做脱敏和隐私处理。


2.2 数据规约

预处理后的数据不一定适合直接使用,因此需要对数据进行集成和变换,将多个数据库中提取出的数据项整合到一起,组成新的数据集环境,并经过详细对比和筛选解决数据不一致和数据冗余等问题。为了适合分析,我们要对数据进行离散化和概念分层处理。


3 模型建立和分析

通过建立消费数据分析模型,对学校校园卡消费行为进行分析,总结学校学生消费特征,对不同消费类型的学生进行用户画像和分类。以学生的“性别”、“专业”分类作为横向分类,以“消费能力(金额)”,“消费项目”,“消费时间”和“消费地点”四个方面为纵向分类,组成分析模型。寻找消费特征进行进行总结,形成假设结论。

#1.总体消费情况
#2.不同专业、性别的学生与消费能力的关系
#3.不同性别的学生与消费项目的关系
#4.消费时间的特征分析
#5.消费地点与门禁通过地点的关系分析
#6.学生消费特征分层模型
import matplotlib.pyplot as plt
expen_rec = pd.read_csv(r'C:\Users\River\Desktop\校园卡数据\expen_rec.csv',encoding='gbk')
student = pd.read_csv(r'C:\Users\River\Desktop\校园卡数据\student.csv',encoding='gbk')
access = pd.read_csv(r'C:\Users\River\Desktop\校园卡数据\access.csv',encoding='gbk')
all_data1 = pd.merge(expen_rec,student,on ='校园卡号',how='left')
all_data1.head()

在这里插入图片描述


3.1 不同专业、性别的学生与消费能力的关系

from pylab import *
plt.rcParams['font.sans-serif']=['SimHei']
%matplotlib inline
total = con_sum.groupby(['性别'])[['消费金额']].sum()
total1= con_sum.groupby(['性别'])[['消费金额']].count()
plt.subplot(121)
plt.pie(total['消费金额'],labels=total.index,autopct='%2.f%%')
plt.title('男女生消费总金额对比')
plt.subplot(122)
plt.pie(total1['消费金额'],labels=total1.index,autopct='%2.f%%')
plt.title('男女生人数对比')
plt.show()

在这里插入图片描述

fig1 = plt.figure(num =1, figsize=(8,4))
plt.title('各消费等级人数')
plt.xlabel('消费等级')
x1 =['(0, 100] ','(100, 150]','(150, 200] ','(200, 250]','(250, 300]','(300, 350]','(350, 400]','(400, 500]','(500, 3000]']
y1 = list(table1.values)
y2 =list(table2.loc[('女',slice(None))].values)
y3 =list(table2.loc[('男',slice(None))].values)
plt.plot(x1,y1,label='总体')
plt.plot(x1,y2,label='女生')
plt.plot(x1,y3,label='男生')
plt.legend(loc=2)
plt.show()

在这里插入图片描述

#分析各专业总消费金额排列
fig2 = plt.figure(num =2, figsize=(14,6))
plt.title('各专业总消费金额排列')
plt.xlabel('专业名称')
x1=table3.index
y1=table3['消费总金额']
plt.bar(x1,y1)
plt.xticks(x1,x1,rotation=45)
for a,b in zip(x1,y1):
    plt.text(a, b+0.05, '%.0f' % b, ha='center', va= 'bottom',fontsize=9)
plt.show()

在这里插入图片描述

小结:

1.该校18级学生的人均每月校园卡消费295.96元;

2.女生人数占比59%,总消费额占比56%,消费总金额与性别差异不大;

3.从消费金额级区间上看,学生的总体消费金额主要在[200,500]的区间内,但男女生消费存在明显差异:女生消费金额在[200-350]区间内人数明显高于男生,但随着增加而下降,而男生在400以上的区间内的人数高于女生。男生对校园卡消费方式差异较大,一般不使用或者经常使用。女生多数选择轻度使用。

4.从各专业消费总金额上看机械制造专业最高,机械制造(学徒)专业最低。但结合各专业的人均消费分析,各专业的人均消费差异很小,标准差仅为42.8。人均消费最高的机械制造(学徒)专业因为人数最少仅为14人,对总体数据影响较小。可以得出:学生的校园卡消费能力与专业无明显区别。


3.2 消费时间的特征分析

fig7 = plt.figure(num =7, figsize=(8,4))
mon1= time_tab.groupby(['日期'])[['消费金额']].count()
mon2= time_tab1.groupby(['日期'])[['消费金额']].count()
mon3= time_tab2.groupby(['日期'])[['消费金额']].count()
plt.title('月度消费次数趋势分析')
plt.xlabel('日期')
x1 = list(mon1.index)
y1 = list(mon1.values)
y2 =list(mon2.values)
y3 =list(mon3.values)
plt.plot(x1,y1,label='总体')
plt.plot(x1,y2,label='女生')
plt.plot(x1,y3,label='男生')
plt.legend(loc=2)
plt.show()
#除个别天数外,女生均高于男生,每周之间趋势相似

在这里插入图片描述

fig8 = plt.figure(num =8, figsize=(8,4))
wk1= time_tab.groupby(['星期'])[['消费金额']].count()
wk2= time_tab1.groupby(['星期'])[['消费金额']].count()
wk3= time_tab2.groupby(['星期'])[['消费金额']].count()
def autolabel(rects):
    for rect in rects:
        height = rect.get_height()
        plt.text(rect.get_x()+rect.get_width()/2.-0.2, 1.03*height, '%s' % float(height))
plt.title('月度消费次数趋势分析')
plt.xlabel('星期')
y1 = wk2['消费金额']
y2 = wk3['消费金额']
x1=range(len(y1))
x2=[i +0.35 for i in x1]
a=plt.bar(x1,y1, width=0.3,label='女生',color='blue')
b=plt.bar(x2,y2, width=0.3,label='男生',color='green')
autolabel(a)
autolabel(b)
plt.legend()
plt.xticks(x1,list(wk1.index),rotation=45)
plt.show()
#周一至周三消费次数较高,男女生在一周内的消费频率的波动没有明显差异

在这里插入图片描述

1.从一个月的每天的消费次数上看,除个别天数男女生消费次数相近,多大多数天数的女生的消费次数高于男生,且每周之间趋势相似,可以得出学生日常的消费习惯比较稳定;

2.从每周的消费次数汇总上看,周一至周三消费次数较高,并且逐步下降,周末为消费次数最低的时候。男女生在一周内的消费频率的波动趋势相同,没有明显差异;

3.从每天的消费的时间段分析上看,周末的刷卡消费次数为平常的12%。食堂可以根据数据情况,适当安排休息,减少人力成本浪费;

4.平常时间的早、中、晚餐的用餐时间集中在7点、11点、17-18点时间段。周末消费的时间相对平缓,早餐的高峰时间会延后到8点时间段,且持续有人员消费,中餐的用餐时间也会有部分后延到12点的时间段。晚餐时间则会部分提前17点的时间段进行,需要提前做好食堂的准备事项。


4 Web系统效果展示

以上是校园卡分析的部分过程,我们还可以做成web系统来展示。效果如下:

4.平常时间的早、中、晚餐的用餐时间集中在7点、11点、17-18点时间段。周末消费的时间相对平缓,早餐的高峰时间会延后到8点时间段,且持续有人员消费,中餐的用餐时间也会有部分后延到12点的时间段。晚餐时间则会部分提前17点的时间段进行,需要提前做好食堂的准备事项。

Web系统效果展示

以上是校园卡分析的部分过程,我们还可以做成web系统来展示。效果如下:

在这里插入图片描述

在这里插入图片描述

🧿 选题指导, 项目分享:见文末


5 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1696358.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32F1之OV7725摄像头·像素数据输出时序、FIFO 读写时序以及摄像头的驱动原理详解

STM32F1之OV7725摄像头-CSDN博客 STM32F1之I2C通信-CSDN博客 目录 1. 像素数据输出时序 2. FIFO 读写时序 2.1 写时序 2.2 读时序 3. 摄像头的驱动原理 1. 像素数据输出时序 主控器控制 OV7725 时采用 SCCB 协议读写其寄存器,而它输出图像时则使用 VGA 或…

【Linux signal】

Linux signal 一、信号分类二、什么是信号集?三、信号的3个处理过程3.1 发送信号3.1.1 向自身发送信号(raise)3.1.2 向别的进程发送信号(kill)3.1.3 发送闹钟信号(alarm) 3.2 接收(注册)信号3.3 处理信号 在Linux操作系统中,SIGUSR1和SIGUSR2是用户定义的…

仅需一块 4GB 的 GPU ,就能运行开源大语言模型:Llama3 70B

最强的开源大语言模型 Llama3 已经发布一段时间了,一些盆友资源有限,私信询问是否可以使用 4GB 的 VRAM 在本地运行 Llama3 70B。 与 GPT-4 相比,Llama3 的性能如何?Llama3 使用了哪些关键的前沿技术使其变得如此强大&#xff1f…

CIM模型

CIM 是 Esri 制图信息模型。 它是一个地图内容规范,用于记录在保存、读取、引用或打开时如何永久保留描述不同项目组件的信息。 该规范以 JSON 表示,适用于 ArcGIS 应用程序和 API 中的地图、场景、布局、图层、符号和样式。 CIM 不仅限于制图设置。 要了解属性的组织方式以及…

【C++题解】1699 - 输出是2的倍数,但非3的倍数的数

问题:1699 - 输出是2的倍数,但非3的倍数的数 类型:循环 题目描述: 请从键盘读入一个整数 n,输出 1∼n 中所有是 2 的倍数,但非 3 的倍数的数,每行 1个。 比如,读入一个整数10 &…

六招搞定,SPA单页面加载速度慢的问题。

众所周知,SPA页面有很多优点,但是首屏加载慢的问题一直被诟病,本文介绍几种解决策略,希望对老铁们有所帮助。 一、SPA页面的独有优势 1. 更快的用户体验: SPA在加载初始页面后,可以在用户与应用程序交互…

k8s dashboard安装

本案例,k8s版本为v1.22.17,所以安装v2.7.0版本的dashboard 1、下载dashboard的yaml文件 curl -O https://raw.githubusercontent.com/kubernetes/dashboard/v2.7.0/aio/deploy/recommended.yaml 2、修改recommended.yaml文件 修改定义的Service&…

HDFS 组织架构

优质博文:IT-BLOG-CN 一、HDFS 概述 HDFS 产生背景: 随着数据量越来越多,一个系统存储不下所有的数据,那么就需要分配到多个操作系统的磁盘中进行存储,但是不方便管理和维护,迫切需要一种系统来管理多台机…

蜜罐技术是一种什么防御技术?实现原理是什么?

前言:蜜罐技术的出现改变了这种被动态势,它通过吸引、诱骗攻击者,研究学习攻击者的攻击目的和攻击手段,从而延缓乃至阻止攻击破坏行为的发生,有效保护真实服务资源。 自网络诞生以来,攻击威胁事件层出不穷…

设置虚拟机为静态IP

为什么需要设置静态IP:有时候我们在练习项目的时候,明明已经连接好了虚拟机的ip,某一天突然连接不上了,通过ifconfig命令查看发现虚拟机的ip发生了变化,导致之前做的内容都需要重新布置, 一、设置静态IP …

AI办公自动化:用kimi将子文件夹里面的文件批量重命名

工作任务和目标:一个文件夹下有多个子文件夹 子文件夹中有多个srt文件,需要删除文件名中的english和空格 第一步,在kimi中输入如下提示词: 你是一个Python编程高手,一步步的思考,来编写下面任务的Python脚…

如何使用pycrypt加密工具测试反病毒产品的检测性能

关于pycrypt pycrypt是一款基于Python 3语言开发的加密工具,广大研究人员可以使用该工具来尝试绕过任意类型的反病毒产品,以检测目标反病毒产品的安全性能。 功能介绍 1、目前已知反病毒产品检测率为0/40; 2、支持绕过任意EDR解决方案&#…

【C++】类与对象——继承详解

目录 一、继承的概念 二、继承关系和访问限定符 三、基类和派生类对象赋值转换 四、继承中的作用域 五、派生类的默认成员函数 六、复杂的菱形继承及菱形虚拟继承 一、继承的概念 继承是面向对象程序设计中很重要的一个概念。继承允许我们依据另一个类来定义一个类&#…

python01

一、Python介绍 Python是一个计算编程语言,可以实现计算程序开发,也可以用于数据处理。SQL语言只能用于结构化数据的处理。Python的比SQL应用更广泛。 1990年推广Python,最初是应用于运维开发,随着不断更新迭代Python的功能更加丰…

AWS Elastic Beanstalk 监控可观测最佳实践

一、概述 Amazon Web Services (AWS) 包含一百多种服务,每项服务都针对一个功能领域。服务的多样性可让您灵活地管理 AWS 基础设施,然而,判断应使用哪些服务以及如何进行预配置可能会非常困难。借助 Elastic Beanstalk,可以在 AW…

仿《Q极速体育》NBACBA体育直播吧足球直播综合体育直播源码

码名称:仿《Q极速体育》NBACBA体育直播吧足球直播综合体育直播源码 开发环境:帝国cms7.5 空间支持:phpmysql 仿《Q极速体育》NBACBA体育直播吧足球直播综合体育直播源码自动采集 - 我爱模板网源码名称:仿《Q极速体育》NBACBA体育直…

【机器学习与大模型】驱动下的应用图像识别与处理

摘要: 本文深入探讨了机器学习在图像识别与处理领域的应用,特别是在大模型的推动下所取得的巨大进展。详细阐述了图像识别与处理的基本原理、关键技术,以及机器学习算法和大模型如何提升其性能和准确性。通过实际案例分析了其在多个领域的广泛…

大模型分布式训练并行技术分享

目前业内解决大模型问题,基本以多节点、分布式方案为主。分布式方案具体的实施时,又分为数据并行、参数并行、流水线并行等,针对具体的业务场景采取合适的并行方案方可带来更高的效率。 后续结合业内主流的分布式框架,具体介绍各种…

网络编程的基础知识(适合新手)

网络编程 在Java中,网络编程是指使用Java语言进行网络通信的编程技术。这种技术使得位于不同地理位置的计算机能够通过网络进行通信,实现资源共享和信息传递。 一、定义 Java网络编程是Java语言在网络通信方面的应用,它利用Java提供的网络…

[图解]产品经理-竞赛题解析:阿布思考法和EA

1 00:00:00,410 --> 00:00:02,330 今天我们来说一道 2 00:00:02,610 --> 00:00:04,690 前些天出的一道竞赛题 3 00:00:07,250 --> 00:00:09,310 怎么样用阿布思考法 4 00:00:09,320 --> 00:00:10,540 来改进EA 5 00:00:11,690 --> 00:00:12,620 题目是这样的…