2024年顶级算法-黑翅鸢优化算法(BKA)-详细原理(附matlab代码)

news2024/11/26 8:53:03

黑翅鸢是一种上半身蓝灰色,下半身白色的小型鸟类。它们的显著特征包括迁徙和捕食行为。它们以小型哺乳动物、爬行动物、鸟类和昆虫为食,具有很强的悬停能力,能够取得非凡的狩猎成功。受其狩猎技能和迁徙习惯的启发,该算法作者建立了基于黑翅鸢的算法模型。

图片

基本原理:

(1)初始化:与其他大多数的此类算法一样,采用随机初始化,黑翅鸢的位置作为解。

图片

   pop是潜在解的个数,dim是给定问题维数的大小,BKij是第i个黑翅鸢的第j个维数。式中:i为介于1和pop之间的整数,BKlb和BKub分别为第i只黑翅风筝在第j维的下界和上界,rand为[ 0、1 ]之间随机选取的值。

(2)攻击行为

        作为小型草原哺乳动物和昆虫的捕食者,黑翅鸢在飞行过程中根据风速调整翅膀和尾角,静静地悬停以观察猎物,然后迅速潜水和攻击。该策略包含针对全局探索和搜索的不同攻击行为。图a展示了一个黑翅鸢在空中盘旋、展翅并保持平衡的场景。

图片

图片

    图a展示了一个黑翅鸢在空中盘旋、展翅并保持平衡的场景,且图a展示了黑翅鸢以极快的速度冲向猎物的场景。图b展示了黑翅鸢在空中盘旋时的攻击状态,且图b展示了黑翅鸢在空中盘旋时的状态。下面给出黑翅鸢攻击行为的数学模型:

图片

图片

 yi,jt和yi,jt + 1分别表示第i只黑翅鸢在第t步和第(t+1)步迭代中第j维的位置。r是一个取值范围为0到1的随机数,p是一个取值为0.9的常数。T是总的迭代次数,t是到目前为止已经完成的迭代次数。

    这些都很好理解,但是原文并未给出n是什么东西的说明。

3)迁移行为

        鸟类迁徙是为了适应季节变化,许多鸟类在冬季从北方向南方迁徙,以获得更好的生存条件和资源。迁移通常由领导带领,他们的导航能力对团队的成功至关重要。

        该算法提出了一个基于鸟群迁徙的假设:如果当前种群的适应度值小于随机种群的适应度值,领导者就会放弃领导,加入迁徙种群,说明不适合领导种群向前迁徙。

图片

    反之,如果当前种群的适应度值大于随机种群的适应度值,则引导种群直到到达目的地。这种策略可以动态地选择优秀的领导者,保证迁移的成功。上图为黑翅鸢迁徙过程中领鸟的变化情况。下面是关于迁移行为的一个数学模型:

图片

图片

Ljt代表了迄今为止第t次迭代的第j维黑翅鸢的领先得分者(当前最优解)。

yi,jt和yi,jt + 1分别表示第i只黑翅鸢在第t步和第(t+1)步迭代中第j维的位置。

 C( 0、1 )代表柯西突变( Jiang , et al 2023)。其定义如下:

一维柯西分布是具有两个参数的连续概率分布。下面的方程说明了一维Cauchy分布的概率密度函数:

图片

当δ = 1,μ = 0时,其概率密度函数将变为标准形式。下面是精确的公式:

图片


小说明一下(原文作者勿怪):

图片

Fi表示任意黑翅鸢在第t次迭代中得到的第j维当前位置(注:这句话是上面这个文章图片原话的中文翻译,不过我觉得他这个描述有点问题。应该是:Fi是当前种群中任一个体的适应度值。因为他前面说了“如果当前种群的适应度值大于随机种群的适应度值,则引导种群直到到达目的地”。)。

图片

Fri表示第t次迭代中任意一只黑翅鸢得到的第j维随机位置的适应度值(这也是原文的中文翻译,看不明白英文的可以直接看这个翻译)。

(这句话我觉得也是有问题的,我觉得做科研还是要严谨一点,毕竟写出来东西是要让人看的,新算法更是让人大量引用的。这个F根据他原文的描述很明显是适应度值,一个种群中有pop个个体,用i来表示,j是代表维度,y(i)是代表种群中的任一个体,那么再读读这句话“Fri表示第t次迭代中任意一只黑翅鸢得到的第j维随机位置的适应度值。”这句话明显有问题,首先适应度值是个体的适应度值,个体可以这么叫,个体中各个维度的那不叫适应度值(fitness value),叫值(value),个体中各个维度的值共同作用于目标函数得到适应度值。还有“Fri”这里都没有“j”这个字母,写这个的时候却带了这个字母的解释,这让人摸不着头脑。

具体拿这个刚运行的BKA来举例,

图片

图片

这个适应度值是3.3602e-103,那它上面那行的这个解的10个维度能叫适应度值吗?

总体上还好,不过这些都是小问题,瑕不掩瑜。告诉我们后来者写文章还是要严谨一些。


这是伪代码:

图片

cec2005上测试:

F1:

图片

F2:

图片

F3:

图片

F4:

图片

F5:

图片

F6:

图片

F7:

图片

参考文献:

【1】Black‑winged kite algorithm: a nature‑inspired meta‑heuristic for solving benchmark functions and engineering problems(原文)

公众号:算法仓库,后台回复:BKA,即可免费获得此matlab版本代码,且包括原文。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1689016.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

转运机器人负载最高可达 1000kg,重复精度高达±5mm

转运机器人,内部搭载ICD系列核心控制器,拥有不同的移载平台,负载最高可达 1000kg;重复精度高达5mm;支持 Wi-Fi漫游,实现更稳健的网络数据交互;无轨化激光 SLAM 导航,配合 3D 避障相机等多传感器进行安全防护。转运器人…

FreeRTOS_同步互斥与通信_环形buffer、队列_学习笔记

FreeRTOS_同步互斥与通信_概念_学习笔记 信号量、互斥量的本质是队列,队列的本质是加强版环形缓冲区 5 FreeRTOS数据传输的方法-环形buffer、队列 如果我有两个任务TaskA和TaskB,他俩可以同时运行。想要在他们之间传递数据,可以用一个全局变…

深入解析kube-scheduler的算法自定义插件

目录 ​编辑 一、问题引入 二、自定义步骤 三、最佳实践考虑 一、问题引入 当涉及到 Kubernetes 集群的调度和资源分配时,kube-scheduler 是一个关键组件。kube-scheduler 负责根据集群的调度策略,将 Pod 分配到适当的节点上。kube-scheduler 默认使…

YTM32的flash应用答疑-详解写保护功能

YTM32的flash应用答疑-详解写保护功能 文章目录 YTM32的flash应用答疑-详解写保护功能IntroductionPrincipleOperation & DemonstrationDemo #1 验证基本的写保护功能Demo #2 编程CUS_NVR设定EFM_ADDR_PROT初值Demo #3 启用写保护后试试块擦除操作 Conclusion Introduction…

HarmonyOS之ArkUI布局设计常见细节

这里写目录标题 1. Button设置带有渐变色的背景图片无效1.1 问题分析1.2 成功案例 2. 路由跳转失败2.1 问题分析 1. Button设置带有渐变色的背景图片无效 1.1 问题分析 说明:设置颜色渐变需先设置backgroundColor为透明色。 Button($r(app.string.login), { type…

python实现对应分析的随笔记

文档来源: Correspondence analysis 1 对应分析 参考: SPSS(十二)SPSS对应分析(图文数据集)案例6:SPSS–对应分析10 对应分析 对应分析的实质(理论很复杂,但是结果很明…

春秋CVE-2022-23906

简介 CMS Made Simple v2.2.15 被发现包含通过上传图片功能的远程命令执行 (RCE) 漏洞。此漏洞通过精心制作的图像文件被利用。 正文 1.进入靶场2.进入登录界面,弱口令admin/123456 3.进入后台,文件上传点 4.上传一句话木马图片 5.复制图片&#xf…

爬虫基础1

一、爬虫的基本概念 1.什么是爬虫? 请求网站并提取数据的自动化程序 2.爬虫的分类 2.1 通用爬虫(大而全) 功能强大,采集面广,通常用于搜索引擎:百度,360,谷歌 2.2 聚焦爬虫&#x…

人工智能应用-实验4-蚁群算法求解 TSP

文章目录 🧡🧡实验内容🧡🧡🧡🧡代码🧡🧡🧡🧡分析结果🧡🧡🧡🧡实验总结🧡🧡 &#x1f9…

【GO基础】1. Go语言环境搭建

Go语言环境搭建 Go的三种安装方式Go标准包安装Windows 安装验证是否安装成功 4.Go的第一个程序 Hello World.go Go的三种安装方式 Go有多种安装方式,可以选择自己适合的。这里介绍三种最常见的安装方式: Go源码安装:这是一种标准的软件安装…

【NumPy】NumPy实战入门:统计与聚合(histogram、percentile、corrcoef、cov)详解

🧑 博主简介:阿里巴巴嵌入式技术专家,深耕嵌入式人工智能领域,具备多年的嵌入式硬件产品研发管理经验。 📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向…

如何解决vcruntime140.dll丢失问题,详细介绍5种靠谱的解决方法

vcruntime140.dll是Microsoft Visual C Redistributable Package的一部分,它为使用Visual C编译器开发的应用程序提供必要的运行时环境。该DLL文件包含了大量应用程序运行时需要调用的库函数,这些函数是实现C标准库、异常处理机制、RTTI(运行…

IO端口编址

统一编址 特点 独立编址 特点 内存地址分配 区别 应用 IO端口地址译码 硬件上的实现 示例1: 示例2: IO指令 软件上的实现 示例

golang通过go-aci适配神通数据库

1. go-aci简介 go-aci是神通数据库基于ACI(兼容Oracle的OCI)开发的go语言开发接口,因此运行时需要依赖ACI驱动和ACI库的头文件。支持各种数据类型的读写、支持参数绑定、支持游标范围等操作。 2. Linux部署步骤 2.1. Go安装: 版本:1.9以上…

CleanMyMac X2024垃圾清理神器,让你的Mac保持飞速运行

在数字时代的浪潮中,我们的苹果电脑扮演了至关重要的角色。然而,随着数据的增长和存储需求的不断上升,不合理的文件管理往往会导致系统性能逐渐下降,影响我们的工作效率。为了有效应对这一挑战,许多用户转向使用专为Ma…

抖音运营_抖音电商介绍

截止20年8月,抖音的日活跃数高达6亿。 20年6月,上线抖店 (抖音官方电商) 一 抖店的定位和特色 1 一站式经营 帮助商家进行 商品交易、店铺管理、客户服务 等全链路的生意经营 2 多渠道拓展 抖音、今日头条、西瓜、抖音火山版…

MyBatisPlus使用流程

引入依赖 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5.4</version> </dependency> 版本号根据需要选取 在实体类上加注解声明&#xff0c;表信息 根据数…

7、按钮无法点击

不能点击&#xff0c;打开f12&#xff0c;删除disabled

AIGC绘画设计基础-建筑设计应用

一、AI及AIGC 对于AI大家都不陌生&#xff0c;但是AIGC这个概念好多人其实不大清楚。“AI”是指人工智能技术本身&#xff0c;而“AIGC”是指基于人工智能技术而生成的内容。 生成式人工智能——AIGC&#xff08;Artificial Intelligence Generated Content&#xff09;&…

Pod进阶——资源限制以及探针检查

目录 一、资源限制 1、资源限制定义&#xff1a; 2、资源限制request和limit资源约束 3、Pod和容器的资源请求和限制 4、官方文档示例 5、CPU资源单位 6、内存资源单位 7、资源限制实例 ①编写yaml资源配置清单 ②释放内存&#xff08;node节点&#xff0c;以node01为…