[AI智能摄像头]RV1126部署yolov5并加速

news2024/11/24 0:18:06

导出onnx模型

yolov5官方地址 git clone https://github.com/ultralytics/yolov5

利用官方命令导出python export.py --weights yolov5n.pt --include onnx

利用代码导出

import os
import sys
os.chdir(sys.path[0])
import onnx
import torch
sys.path.append('..')
from models.common import DetectMultiBackend
from models.experimental import attempt_load
DEVICE='cuda' if torch.cuda.is_available else 'cpu'
def main():
    """create model """
    input = torch.randn(1, 3, 640, 640, requires_grad=False).float().to(torch.device(DEVICE))
    model = attempt_load('./model/yolov5n.pt', device=DEVICE, inplace=True, fuse=True)  # load FP32 model
    #model = DetectMultiBackend('./model/yolov5n.pt', data=input)
    model.to(DEVICE)

    torch.onnx.export(model,
            input,
            'yolov5n_self.onnx', # name of the exported onnx model
            export_params=True,
            opset_version=12,
            do_constant_folding=False, 
            input_names=["images"])
if __name__=="__main__":
    main()

onnx模型测试

import os
import sys
os.chdir(sys.path[0])
import onnxruntime
import torch
import torchvision
import numpy as np
import time
import cv2
sys.path.append('..')
from ultralytics.utils.plotting import Annotator, colors

ONNX_MODEL="./yolov5n.onnx"
DEVICE='cuda' if torch.cuda.is_available() else 'cpu'

def xywh2xyxy(x):
    """Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right."""
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 0] = x[..., 0] - x[..., 2] / 2  # top left x
    y[..., 1] = x[..., 1] - x[..., 3] / 2  # top left y
    y[..., 2] = x[..., 0] + x[..., 2] / 2  # bottom right x
    y[..., 3] = x[..., 1] + x[..., 3] / 2  # bottom right y
    return y

def box_iou(box1, box2, eps=1e-7):
    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
    """
    Return intersection-over-union (Jaccard index) of boxes.

    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)

    # IoU = inter / (area1 + area2 - inter)
    return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)

def non_max_suppression(
    prediction,
    conf_thres=0.25,
    iou_thres=0.45,
    classes=None,
    agnostic=False,
    multi_label=False,
    labels=(),
    max_det=300,
    nm=0,  # number of masks
):
    """
    Non-Maximum Suppression (NMS) on inference results to reject overlapping detections.

    Returns:
         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
    """

    # Checks
    assert 0 <= conf_thres <= 1, f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0"
    assert 0 <= iou_thres <= 1, f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0"

    device = prediction.device
    mps = "mps" in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[2] - nm - 5  # number of classes
    xc = prediction[..., 4] > conf_thres  # candidates

    # Settings
    # min_wh = 2  # (pixels) minimum box width and height
    max_wh = 7680  # (pixels) maximum box width and height
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 0.5 + 0.05 * bs  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    mi = 5 + nc  # mask start index
    output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
            v[:, :4] = lb[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box/Mask
        box = xywh2xyxy(x[:, :4])  # center_x, center_y, width, height) to (x1, y1, x2, y2)
        mask = x[:, mi:]  # zero columns if no masks

        # Detections matrix nx6 (xyxy, conf, cls)
        if multi_label:
            i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1)
        else:  # best class only
            conf, j = x[:, 5:mi].max(1, keepdim=True)
            x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence and remove excess boxes

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        i = i[:max_det]  # limit detections
        if merge and (1 < n < 3e3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if mps:
            output[xi] = output[xi].to(device)
        if (time.time() - t) > time_limit:
            break  # time limit exceeded

    return output

def draw_bbox(image, result, color=(0, 0, 255), thickness=2):
    # img_path = cv2.cvtColor(img_path, cv2.COLOR_BGR2RGB)
    image = image.copy()
    for point in result:
        x1,y1,x2,y2=point
        cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)
    return image

def main():
    input=torch.load("input.pt").to('cpu')
    input_array=np.array(input)
    onnx_model = onnxruntime.InferenceSession(ONNX_MODEL)
    input_name = onnx_model.get_inputs()[0].name
    out = onnx_model.run(None, {input_name:input_array})
    out_tensor = torch.tensor(out).to(DEVICE)
    pred = non_max_suppression(out_tensor,0.25,0.45,classes=None,agnostic=False,max_det=1000)
    # Process predictions
    for i, det in enumerate(pred):  # per image
        im0_=cv2.imread('../data/images/bus.jpg')
        im0=im0_.reshape(1,3,640,640)
        names=torch.load('name.pt')
        annotator = Annotator(im0, line_width=3, example=str(names))
        coord=[]
        image=im0.reshape(640,640,3)
        if len(det):
            # Rescale boxes from img_size to im0 size
            #det[:, :4] = scale_boxes(im0.shape[2:], det[:, :4], im0.shape).round()
            # Write results
            for *xyxy, conf, cls in reversed(det):
                # Add bbox to image
                c = int(cls)  # integer class
                label = f"{names[c]} {conf:.2f}"
                # 创建两个顶点坐标子数组,并将它们组合成一个列表``
                coord.append([int(xyxy[0].item()), int(xyxy[1].item()),int(xyxy[2].item()), int(xyxy[3].item())])
        image=draw_bbox(image,coord)
        # Stream results
        save_success =cv2.imwrite('result.jpg', image)
        print(f"save image end {save_success}")
               
if __name__=="__main__":
    main()

测试结果

板端部署

环境准备

搭建好rknntoolkit以及rknpu环境

大致流程

模型转换

新建export_rknn.py用于将onnx模型转化为rknn模型

import os
import sys
os.chdir(sys.path[0])
import numpy as np
import cv2
from rknn.api import RKNN
import torchvision
import torch
import time

ONNX_MODEL = './model/yolov5n.onnx'
RKNN_MODEL = './model/yolov5n.rknn'

def main():
    """Create RKNN object"""
    rknn = RKNN()
    if not os.path.exists(ONNX_MODEL):
        print('model not exist')
        exit(-1)
        
    """pre-process config"""
    print('--> Config model')
    rknn.config(reorder_channel='0 1 2',
                mean_values=[[0, 0, 0]],
                std_values=[[255, 255, 255]],
                optimization_level=0,
                target_platform = ['rv1126'],
                output_optimize=1,
                quantize_input_node=True)
    print('done')
    
    """Load ONNX model"""
    print('--> Loading model')
    ret = rknn.load_onnx(model=ONNX_MODEL,
                        inputs=['images'],
                        input_size_list = [[3, 640, 640]],
                        outputs=['output0'])
    if ret != 0:
        print('Load yolov5 failed!')
        exit(ret)
    print('done')

    """Build model"""
    print('--> Building model')
    #ret = rknn.build(do_quantization=True,dataset='./data/data.txt')
    ret = rknn.build(do_quantization=False,pre_compile=True)
    if ret != 0:
        print('Build yolov5 failed!')
        exit(ret)
    print('done')

    """Export RKNN model"""
    print('--> Export RKNN model')
    ret = rknn.export_rknn(RKNN_MODEL)
    if ret != 0:
        print('Export yolov5rknn failed!')
        exit(ret)
    print('done')
    
if __name__=="__main__":
    main()

新建test_rknn.py用于测试rknn模型

import os
import sys
os.chdir(sys.path[0])
import numpy as np
import cv2
from rknn.api import RKNN
import torchvision
import torch
import time

RKNN_MODEL = './model/yolov5n.rknn'
DATA='./data/bus.jpg'

def xywh2xyxy(x):
    coord=[]
    for x_ in x:
        xl=x_[0]-x_[2]/2
        yl=x_[1]-x_[3]/2
        xr=x_[0]+x_[2]/2
        yr=x_[1]+x_[3]/2
        coord.append([xl,yl,xr,yr])
    coord=torch.tensor(coord).to(x.device)
    return coord
def box_iou(box1, box2, eps=1e-7):
    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
    # IoU = inter / (area1 + area2 - inter)
    return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
def non_max_suppression(
    prediction,
    conf_thres=0.25,
    iou_thres=0.45,
    classes=None,
    agnostic=False,
    multi_label=False,
    labels=(),
    max_det=300,
    nm=0,  # number of masks
):

    # Checks
    assert 0 <= conf_thres <= 1, f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0"
    assert 0 <= iou_thres <= 1, f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0"

    device = prediction.device
    mps = "mps" in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[2] - nm - 5  # number of classes
    xc = prediction[..., 4] > conf_thres  # candidates
    count_true = torch.sum(xc.type(torch.int))

    # Settings
    # min_wh = 2  # (pixels) minimum box width and height
    max_wh = 7680  # (pixels) maximum box width and height
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 0.5 + 0.05 * bs  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    mi = 5 + nc  # mask start index
    output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
            v[:, :4] = lb[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box/Mask
        box = xywh2xyxy(x[:, :4])  # center_x, center_y, width, height) to (x1, y1, x2, y2)
        mask = x[:, mi:]  # zero columns if no masks

        # Detections matrix nx6 (xyxy, conf, cls)
        if multi_label:
            i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1)
        else:  # best class only
            conf, j = x[:, 5:mi].max(1, keepdim=True)
            x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence and remove excess boxes

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        i = i[:max_det]  # limit detections
        if merge and (1 < n < 3e3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if mps:
            output[xi] = output[xi].to(device)
        if (time.time() - t) > time_limit:
            break  # time limit exceeded

    return output
def draw_bbox(image, result, color=(0, 0, 255), thickness=2):
    # img_path = cv2.cvtColor(img_path, cv2.COLOR_BGR2RGB)
    image = image.copy()
    for point in result:
        x1,y1,x2,y2=point
        cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)
    return image

def main():
    # Create RKNN object
    rknn = RKNN()
    rknn.list_devices()
    #load rknn model
    ret = rknn.load_rknn(path=RKNN_MODEL)
    if ret != 0:
        print('load rknn failed')
        exit(ret)
    # init runtime environment
    print('--> Init runtime environment')
    ret = rknn.init_runtime(target='rv1126', device_id='86d4fdeb7f3af5b1',perf_debug=True,eval_mem=True)
    if ret != 0:
        print('Init runtime environment failed')
        exit(ret)
    print('done')
    # Set inputs
    image=cv2.imread('./data/bus.jpg')
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    # Inference
    print('--> Running model')
    outputs = rknn.inference(inputs=[image])
    #post process
    out_tensor = torch.tensor(outputs)
    pred = non_max_suppression(out_tensor,0.25,0.45,classes=None,agnostic=False,max_det=1000)
    # Process predictions
    for i, det in enumerate(pred):  # per image
        im0_=cv2.imread(DATA)
        im0=im0_.reshape(1,3,640,640)
        coord=[]
        image=im0.reshape(640,640,3)
        if len(det):
            """Write results"""
            for *xyxy, conf, cls in reversed(det):
                c = int(cls)  # integer class
                coord.append([int(xyxy[0].item()), int(xyxy[1].item()),int(xyxy[2].item()), int(xyxy[3].item())])
                print(f"[{coord[0][0]},{coord[0][1]},{coord[0][2]},{coord[0][3]}]:ID is {c}")
        image=draw_bbox(image,coord)
        # Stream results
        save_success =cv2.imwrite('result.jpg', image)
        print(f"save image end {save_success}")
    
    rknn.release()

if __name__=="__main__":
    main()

板端cpp推理代码编写

拷贝一份template改名为yolov5,目录结构如下

前处理代码

void PreProcess(cv::Mat *image)
{
    cv::cvtColor(*image, *image, cv::COLOR_BGR2RGB);
}

后处理代码

1:输出维度为[1,25200,85],其中85的前四个为中心点的x,y以及框的宽和高,第五个为框的置信度,后面80个为类别的置信度(有80个类别);

2:25200=(80∗80+40∗40+20∗20)∗3,stride为8、16、32,640/8=80,640/16=40,640/32=20

3:NMS删除冗余候选框

1:IOU交并比:检测两个框重叠程度=交集面积/并集面积

2:主要步骤:

  1. 首先筛选出大于阈值的所有候选框(>0.4)
  2. 接着针对每一个种类将候选框进行分类
  3. 找到第n个类别进行循环操作
  4. 先找到置信度最大的框,放到保留区
  5. 和候选区的其他框计算交并比(IOU),若大于iou阈值则删除
  6. 再从候选区找到第二大的候选框放到保留区
  7. 重复4操作,直至候选区没有框
  8. 重复3操作,直至所有类别
float iou(Bbox box1, Bbox box2) {
    /*  
    iou=交并比
    */
    int x1 = max(box1.x, box2.x);
    int y1 = max(box1.y, box2.y);
    int x2 = min(box1.x + box1.w, box2.x + box2.w);
    int y2 = min(box1.y + box1.h, box2.y + box2.h);
    int w = max(0, x2 - x1);
    int h = max(0, y2 - y1);
    float over_area = w * h;
    return over_area / (box1.w * box1.h + box2.w * box2.h - over_area);
}

bool judge_in_lst(int index, vector<int> index_lst) {
    //若index在列表index_lst中则返回true,否则返回false
    if (index_lst.size() > 0) {
        for (int i = 0; i < int(index_lst.size()); i++) {
            if (index == index_lst.at(i)) {
                return true;
            }
        }
    }
    return false;
}

int get_max_index(vector<Detection> pre_detection) {
    //返回最大置信度值对应的索引值
    int index;
    float conf;
    if (pre_detection.size() > 0) {
        index = 0;
        conf = pre_detection.at(0).conf;
        for (int i = 0; i < int(pre_detection.size()); i++) {
            if (conf < pre_detection.at(i).conf) {
                index = i;
                conf = pre_detection.at(i).conf;
            }
        }
        return index;
    }
    else {
        return -1;
    }
}

vector<int> nms(vector<Detection> pre_detection, float iou_thr)
{
    /*
    返回需保存box的pre_detection对应位置索引值
    */
    int index;
    vector<Detection> pre_detection_new;
    //Detection det_best;
    Bbox box_best, box;
    float iou_value;
    vector<int> keep_index;
    vector<int> del_index;
    bool keep_bool;
    bool del_bool;

    if (pre_detection.size() > 0) {
        pre_detection_new.clear();
        // 循环将预测结果建立索引
        for (int i = 0; i < int(pre_detection.size()); i++) {
            pre_detection.at(i).index = i;
            pre_detection_new.push_back(pre_detection.at(i));
        }
        //循环遍历获得保留box位置索引-相对输入pre_detection位置
        while (pre_detection_new.size() > 0) {
            index = get_max_index(pre_detection_new);
            if (index >= 0) {
                keep_index.push_back(pre_detection_new.at(index).index); //保留索引位置

                // 更新最佳保留box
                box_best.x = pre_detection_new.at(index).bbox[0];
                box_best.y = pre_detection_new.at(index).bbox[1];
                box_best.w = pre_detection_new.at(index).bbox[2];
                box_best.h = pre_detection_new.at(index).bbox[3];

                for (int j = 0; j < int(pre_detection.size()); j++) {
                    keep_bool = judge_in_lst(pre_detection.at(j).index, keep_index);
                    del_bool = judge_in_lst(pre_detection.at(j).index, del_index);
                    if ((!keep_bool) && (!del_bool)) { //不在keep_index与del_index才计算iou
                        box.x = pre_detection.at(j).bbox[0];
                        box.y = pre_detection.at(j).bbox[1];
                        box.w = pre_detection.at(j).bbox[2];
                        box.h = pre_detection.at(j).bbox[3];
                        iou_value = iou(box_best, box);
                        if (iou_value > iou_thr) {
                            del_index.push_back(j); //记录大于阈值将删除对应的位置
                        }
                    }

                }
                //更新pre_detection_new
                pre_detection_new.clear();
                for (int j = 0; j < int(pre_detection.size()); j++) {
                    keep_bool = judge_in_lst(pre_detection.at(j).index, keep_index);
                    del_bool = judge_in_lst(pre_detection.at(j).index, del_index);
                    if ((!keep_bool) && (!del_bool)) {
                        pre_detection_new.push_back(pre_detection.at(j));
                    }
                }
            }
        }
    }

    del_index.clear();
    del_index.shrink_to_fit();
    pre_detection_new.clear();
    pre_detection_new.shrink_to_fit();

    return  keep_index;

}


vector<Detection> PostProcess(float* prob,float conf_thr=0.3,float nms_thr=0.5)
{
    vector<Detection> pre_results;
    vector<int> nms_keep_index;
    vector<Detection> results;
    bool keep_bool;
    Detection pre_res;
    float conf;
    int tmp_idx;
    float tmp_cls_score;
    for (int i = 0; i < 25200; i++) {
        tmp_idx = i * (CLSNUM + 5);
        pre_res.bbox[0] = prob[tmp_idx + 0];  //cx
        pre_res.bbox[1] = prob[tmp_idx + 1];  //cy
        pre_res.bbox[2] = prob[tmp_idx + 2];  //w
        pre_res.bbox[3] = prob[tmp_idx + 3];  //h
        conf = prob[tmp_idx + 4];  // 是为目标的置信度
        tmp_cls_score = prob[tmp_idx + 5] * conf; //conf_thr*nms_thr
        pre_res.class_id = 0;
        pre_res.conf = 0;
        // 这个过程相当于从除了前面5列,在后面的cla_num个数据中找出score最大的值作为pre_res.conf,对应的列作为类id
        for (int j = 1; j < CLSNUM; j++) {     
            tmp_idx = i * (CLSNUM + 5) + 5 + j; //获得对应类别索引
            if (tmp_cls_score < prob[tmp_idx] * conf){
                tmp_cls_score = prob[tmp_idx] * conf;
                pre_res.class_id = j;
                pre_res.conf = tmp_cls_score;
            }
        }
        if (conf >= conf_thr) {
            pre_results.push_back(pre_res);
        }
    }
    //使用nms,返回对应结果的索引
    nms_keep_index=nms(pre_results,nms_thr);
    // 茛据nms找到的索引,将结果取出来作为最终结果
    for (int i = 0; i < int(pre_results.size()); i++) {
        keep_bool = judge_in_lst(i, nms_keep_index);
        if (keep_bool) {
            results.push_back(pre_results.at(i));
        }
    }

    pre_results.clear();
    pre_results.shrink_to_fit();
    nms_keep_index.clear();
    nms_keep_index.shrink_to_fit();

    return results; 
}

结果展示

至此板端部署结束,接下来进行优化;

优化加速

可以看到模型推理的时间近2s,对于实时处理来说是远远不够的,因此需要对模型进行加速

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1680311.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何使用JMeter测试导入接口/导出接口?

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 关注公众号&#xff1a;互联网杂货铺&#xff0c;回复1 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 今天上班&#xff0c;被开发问了一个问题&#xff1a;JM…

怎样恢复E盘里删了的文件夹,2024让EasyRecovery来帮你轻松恢复

使用EasyRecovery易恢复进行数据恢复非常简单。首先&#xff0c;用户需要选择需要恢复的数据类型&#xff0c;如文档、图片、视频等。然后&#xff0c;软件会对选定的存储设备进行全面扫描&#xff0c;以寻找可恢复的数据。在扫描过程中&#xff0c;用户可以预览部分已找到的文…

一周学习总结:数组与链表

学习内容&#xff1a;数组与链表、计算机网络知识 数组&#xff1a; 从数组的基础知识到相关应用 数组的基础知识&#xff1a;数组在内存中的存储、数组的相关操作&#xff08;获取与更新&#xff09;、数组的相关应用&#xff1a; 二分查找法⭐⭐⭐⭐⭐ ● 掌握左闭右闭的…

matlab使用教程(71)—控制坐标区布局

1.与位置相关的属性和函数 有几个属性和函数可用于获取和设置坐标区的大小与位置。下表摘要显示了这些属性和函数。 函数或属性描述 OuterPosition 属性 使用此属性可以查询或更改坐标区的外边界&#xff0c;包括标题、标签和边距。要更改外边界&#xff0c;请将此属性指定为…

暴利的副业兼职,抖音蓝海赛道,批量复制这个项目,1年200个

在有小孩的家庭中&#xff0c;父母都非常重视孩子的教育&#xff0c;并愿意为此投入大量资金。根据之前的新闻报道&#xff0c;有些父母会毫不犹豫地为孩子花费数千甚至上万元报名参加各种培训课程。尤其是在独生子女家庭中&#xff0c;家长更注重培养孩子的各方面能力。 周周近…

基于springboot实现社区智慧养老监护管理平台系统项目【项目源码+论文说明】计算机毕业设计

基于SpringBoot实现社区智慧养老监护管理平台系统演示 摘要 如今社会上各行各业&#xff0c;都在用属于自己专用的软件来进行工作&#xff0c;互联网发展到这个时候&#xff0c;人们已经发现离不开了互联网。互联网的发展&#xff0c;离不开一些新的技术&#xff0c;而新技术的…

Linux交叉编译

目录 一. 下载交叉编译工具 1.使用环境要求 2.获取Linux SDK 方法一&#xff1a;从github上下载orangepi-build 方法二&#xff1a;从百度网盘下载提前编译好的Linux SDK包 通过以下命令进行合并解压 3.修改配置脚本 4.首次编译完整的SDK 1.运行build.sh脚本 2.选择F…

Colab/PyTorch - 004 Torchvision Semantic Segmentation

Colab/PyTorch - 004 Torchvision Semantic Segmentation 1. 源由2. 语义分割 - 应用2.1 自动驾驶2.2 面部分割2.3 室内物体分割2.4 地理遥感 3. 语义分割 - torchvision3.1 FCN 使用 ResNet-101 语义分割3.1.1 加载模型3.1.2 加载图像3.1.3 预处理图像3.1.4 网络的前向传播3.1…

红酒与美食的完善搭配艺术

在美食的世界里&#xff0c;红酒总是扮演着不可或缺的角色。它与美食的搭配&#xff0c;是一门深奥的艺术。云仓酒庄雷盛红酒&#xff0c;作为一款备受欢迎的红酒品牌&#xff0c;以其卓着的品质和丰富的口感&#xff0c;成为了红酒与美食搭配的典范。 雷盛红酒&#xff0c;源…

中国农业大学:学硕11408复试线上涨40分,今年还会持续涨吗?中国农业大学计算机考研考情分析!

中国农业大学&#xff08;China Agricultural University&#xff09;&#xff0c;简称“中国农大”&#xff0c;坐落于中国首都北京&#xff0c;由中华人民共和国教育部直属&#xff0c;中央直管副部级建制&#xff0c;水利部、农业部和北京市共建&#xff0c;位列国家“双一流…

CNN卷积神经网络初学

1.为什么要学CNN 在传统神经网络中&#xff0c;我们要识别下图红色框中的图像时&#xff0c;我们很可能识别不出来&#xff0c;因为这六张图的位置都不通&#xff0c;计算机无法分辨出他们其实是一种形状或物体。 这是传统的神经网络图&#xff0c;通过权重调整神经元和神经元…

云曦实验室期中考核题

Web_SINGIN 解题&#xff1a; 点击打开环境&#xff0c;得 查看源代码&#xff0c;得 点开下面的超链接&#xff0c;得 看到一串base64编码&#xff0c;解码得flag 简简单单的文件上传 解题&#xff1a; 点击打开环境&#xff0c;得 可以看出这是一道文件上传的题目&#x…

智慧变电站守护者:TSINGSEE青犀AI视频智能管理系统引领行业革新

一、方案概述 随着科技的不断进步&#xff0c;人工智能&#xff08;AI&#xff09;技术已经深入到各个领域。在变电站安全监控领域&#xff0c;引入AI视频监控智能分析系统&#xff0c;可以实现对站内环境、设备状态的实时监控与智能分析&#xff0c;从而提高变电站的安全运行…

(实测验证)【移远EC800M-CN 】GNSS功能打开和关闭关闭步骤验证

引言 本文章使用自研“超小体积TTL转4GGPS集成模块”进行实测验证&#xff1b; 一、打开GNSS功能 步骤一、通过 ATQGPSCFG 配置 GNSS 参数 &#xff08;1&#xff09;该命令用于查询和配置 GNSS 不同的设置&#xff0c;包括 NMEA 语句输出端口、NMEA 语句的输出类型等。 1.1…

【图神经网络——消息传递】

消息传递机制 画图先&#xff1a;导包&#xff1a;画图&#xff1a; 实现消息传递&#xff1a;例子一&#xff1a;例子二&#xff1a; 画图先&#xff1a; 导包&#xff1a; import networkx as nx import matplotlib.pyplot as plt import torch from torch_geometric.nn im…

基于Java的飞机大战游戏的设计与实现(论文 + 源码)

关于基于Java的飞机大战游戏.zip资源-CSDN文库https://download.csdn.net/download/JW_559/89313362 基于Java的飞机大战游戏的设计与实现 摘 要 现如今&#xff0c;随着智能手机的兴起与普及&#xff0c;加上4G&#xff08;the 4th Generation mobile communication &#x…

用友GRP-U8 bx_dj_check.jsp SQL注入漏洞复现(XVE-2024-10537)

0x01 免责声明 请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;作者不为此承担任何责任。工具来自网络&#xff0c;安全性自测&#xff0c;如有侵权请联系删…

WebSocket or SSE?即时通讯的应用策略【送源码】

最近在研究H5推送&#xff0c;发现除了我们常用的WebSocket以外&#xff0c;其实还有一种协议也能实现H5推送&#xff0c;那就是SSE协议。 而且&#xff0c;当前主流的大模型平台&#xff0c;比如ChatGPT、通义千问、文心一言&#xff0c;对话时采用的就是SSE。 什么是SSE协议…

分布式系统的一致性与共识算法(三)

顺序一致性(Sequential Consistency) ZooKeeper 一种说法是ZooKeeper是最终一致性&#xff0c;因为由于多副本、以及保证大多数成功的ZAB协议&#xff0c;当一个客户端进程写入一个新值&#xff0c;另外一个客户端进程不能保证马上就能读到这个值&#xff0c;但是能保证最终能…

VB6连接各种类型的数据库

VB6连接各种类型的数据库 一、连接VFP数据库 Dim CNN As New ADODB.Connection Dim rssys As New ADODB.Recordset If CNN.state 1 Then CNN.Close CNN.ConnectionString "Driver{Microsoft Visual FoxPro Driver};SourceType.DBc;SourceDb" Trim(Text1) CNN…