数学建模——农村公交与异构无人机协同配送优化

news2025/1/10 2:52:25

目录

1.题目

2.问题1

1. 问题建模

输入数据

​编辑

 2. 算法选择

3.数据导入 

3.模型构建

1. 距离计算

2. 优化模型

具体步骤

进一步优化

1. 重新定义问题

2. 变量定义

3. 优化目标

具体步骤

再进一步优化

具体实现步骤

1. 计算距离矩阵

2. 变量定义

3. 约束条件

4. 优化目标

以下是优化模型的具体实现:

1.确保所有约束和目标函数都得到正确实现。

2. 可视化飞行路径和时间表

最终实现结果


1.题目

A题 农村公交与异构无人机协同配送优化

农村地区因其复杂多变的地形、稀疏的道路网络以及分散的配送点,传统配送方式效率低下,成本高昂,难以满足日益增长的配送需求。随着无人机技术迅猛发展和在物流领域的广泛应用,一种全新的配送模式应运而生——农村公交与异构无人机协同配送模式。

农村公交作为地面交通系统的重要组成部分,其覆盖范围广、定时定点运行且成本相对较低,为无人机提供了理想的地面支撑。通过将无人机与农村公交相结合,可以充分利用两者的优势,实现高效协同配送。具体而言,农村公交负责将无人机和货物运送至各个公交站点,这些站点既是无人机的起降点,也是货物的转运中心。无人机则利用自身的空中优势,从公交站点起飞,快速准确地完成到具体配送点的配送任务。

为提升配送效率和灵活性,异构无人机的使用显得尤为重要。异构无人机具有不同的飞行特性、载荷能力和速度,能够根据不同配送需求进行灵活的任务分配。通过合理搭配和调度不同类型的异构无人机,可以实现对复杂多变配送需求的精准应对,提高整体配送效率。

实施同时取送货服务也更能体现农村物流的独特需求。在一次飞行中,无人机能够兼顾多个配送点的送货与取货任务,从而显著提升配送效率,减少周转时间。通过精心策划飞行路径和合理分配任务,能够有效减少无人机的使用次数和飞行频率。

农村公交装载货物和无人机,从配送中心出发,按公交固定路线及公交站点行驶。根据客户需求和无人机性能,精准分配无人机类型及配送任务。无人机在接近客户点的公交站点起飞,按优化路径执行取送货任务,确保高效完成。完成任务后,无人机返回最近站点,搭乘下一次经过该站点的公交进行迅速换电后继续服务该站点附近客户需求点或搭载公交到达其他站点服务其周围需求点,无人机没有任务后搭载公交回到配送中心。整个过程中,无人机与农村公交紧密协作,循环执行配送任务,直至所有任务完成。通过这种模式,能够充分利用地面和空中的优势,提高配送效率,降低成本,满足农村地区日益增长的配送需求。

假设无人机可以在公交站点等待下一班次的公交车,若公交站点处有返回的无人机需要装货,公交车在该站点逗留5分钟时间用于更换无人机电池(不需要充电)及装载货物。无人机产生的费用包括两部分,一是固定费用,只要使用就会产生,与无人机类型有关,二是运输费用,取决于无人机类型及运输过程的飞行里程(从站点起飞至回到站点的飞行里程)。此外,需求点的任务不能拆分,一辆公交车最多可携带两架无人机,每天任务完成后无人机必须回到起始站,不考虑客户点的时间窗,不考虑道路的随机性堵车,公交车的行驶速度为35公里/小时。

请根据附件所给数据解决以下几个问题:

问题1 只考虑使用A类无人机,请给出公交与无人机协同配送方案,使总费用最小;要求给出具体的飞行路径及时刻表。

问题2 三种类型无人机均可使用时,请给出最小费用的协同配送方案。

问题3 在问题2的基础上,如果每个需求点有取货的需求,且取货能获得一定的收入(每公斤0.5元),请给出最佳配送方案。

2.问题1

只考虑使用A类无人机,请给出公交与无人机协同配送方案,使总费用最小;要求给出具体的飞行路径及时刻表

1. 问题建模

输入数据
  • 公交站点数据:包括站点的位置和之间的距离。
  • 需求点数据:包括需求点的位置和配送需求。
  • A类无人机性能参数:包括最大飞行距离、载重能力、固定费用和飞行费用。
  • 公交发车时间表:公交车的出发和到达时间。

 2. 算法选择

3.数据导入 

# 公交站点数据
stations_data = pd.DataFrame({
    'Station_ID': [1, 2, 3, 4, 5, 6, 7, 8, 9],
    'Longitude': [110.125713, 110.08442, 110.029866, 109.962839, 109.956003, 109.920425, 109.839046, 109.823329, 109.767127],
    'Latitude': [32.815024, 32.771676, 32.748994, 32.743622, 32.812194, 32.856136, 32.860495, 32.847468, 32.807855]
})

# 需求点数据
demands_data = pd.DataFrame({
    'Demand_ID': range(1, 51),
    'Longitude': [
        110.1053385, 110.1147032, 110.0862574, 110.0435344, 110.0575508,
        110.0386243, 110.0115086, 110.0390602, 110.0246454, 110.0575847,
        109.9456331, 109.9612274, 109.94592, 109.9316682, 109.9245376,
        109.7087533, 109.7748005, 109.7475891, 109.7534532, 109.783015,
        109.7410728, 109.7554844, 109.7147417, 109.8807093, 109.8070677,
        109.9054481, 109.8954509, 109.8979229, 109.8942179, 109.8610985,
        109.8744682, 109.8338804, 109.870924, 109.8292467, 109.8711312,
        109.8813363, 109.978788, 109.8166563, 109.8151216, 109.885638,
        109.9890984, 109.9647812, 109.9303732, 109.9401099, 109.944496,
        109.979708, 109.976757, 109.94999, 109.973673, 109.967765
    ],
     'Latitude': [
        32.77881526, 32.75599834, 32.74905239, 32.74275416, 32.76712584,
        32.70855831, 32.72619993, 32.73965997, 32.72360718, 32.76553658,
        32.7526657, 32.72286471, 32.70899877, 32.73848444, 32.70740885,
        32.7815564, 32.80016336, 32.80903496, 32.85129032, 32.82296929,
        32.82914197, 32.80581363, 32.79995734, 32.89696579, 32.79622985,
        32.89437141, 32.86724756, 32.83444574, 32.83224374, 32.90687042,
        32.89939698, 32.85616627, 32.848223, 32.83825122, 32.88979101,
        32.8642824, 32.75943454, 32.8096699, 32.82822489, 32.84032485,
        32.80854774, 32.80993619, 32.78956582, 32.85264625, 32.802178,
        32.817449, 32.811064, 32.795207, 32.746858, 32.820998
    ],
    'Demand_kg': [3, 4, 2, 0, 8, 7, 4, 9, 10, 6, 7, 12, 3, 5, 6, 5, 3, 13, 12, 3,
                  14, 10, 4, 34, 6, 6, 3, 4, 20, 5, 6, 5, 3, 15, 2, 6, 3, 4, 3, 2,
                  6, 5, 9, 3, 3, 4, 6, 4, 4, 0]
})
# 无人机参数
D_max = 27  # 最大飞行距离
Q_max = 9   # 最大载重
C_fixed = 80  # 固定费用
C_per_km = 0.8  # 每公里费用
wait_time = 5 / 60  # 等待时间(小时)
battery_swap_time = 5 / 60  # 电池更换时间(小时)

# 公交车参数
bus_speed = 35  # 公交车速度(km/h)
bus_schedule = {
    '白河至仓上': [6.67, 8.5, 9, 11, 14, 16.5],
    '仓上至白河': [6, 7.33, 8.83, 11, 14, 15.83]
}

3.模型构建

import pandas as pd # 公交站点数据 stations_data = pd.DataFrame({ 'Station_ID': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'Longitude': [110.125713, 110.08442, 110.029866, 109.962839, 109.956003, 109.920425, 109.839046, 109.823329, 109.767127], 'Latitude': [32.815024, 32.771676, 32.748994, 32.743622, 32.812194, 32.856136, 32.860495, 32.847468, 32.807855] }) # 需求点数据 demands_data = pd.DataFrame({ 'Demand_ID': range(1, 51), 'Longitude': [ 110.1053385, 110.1147032, 110.0862574, 110.0435344, 110.0575508, 110.0386243, 110.0115086, 110.0390602, 110.0246454, 110.0575847, 109.9456331, 109.9612274, 109.94592, 109.9316682, 109.9245376, 109.7087533, 109.7748005, 109.7475891, 109.7534532, 109.783015, 109.7410728, 109.7554844, 109.7147417, 109.8807093, 109.8070677, 109.9054481, 109.8954509, 109.8979229, 109.8942179, 109.8610985, 109.8744682, 109.8338804, 109.870924, 109.8292467, 109.8711312, 109.8813363, 109.978788, 109.8166563, 109.8151216, 109.885638, 109.9890984, 109.9647812, 109.9303732, 109.9401099, 109.944496, 109.979708, 109.976757, 109.94999, 109.973673, 109.967765 ], 'Latitude': [ 32.77881526, 32.75599834, 32.74905239, 32.74275416, 32.76712584, 32.70855831, 32.72619993, 32.73965997, 32.72360718, 32.76553658, 32.7526657, 32.72286471, 32.70899877, 32.73848444, 32.70740885, 32.7815564, 32.80016336, 32.80903496, 32.85129032, 32.82296929, 32.82914197, 32.80581363, 32.79995734, 32.89696579, 32.79622985, 32.89437141, 32.86724756, 32.83444574, 32.83224374, 32.90687042, 32.89939698, 32.85616627, 32.848223, 32.83825122, 32.88979101, 32.8642824, 32.75943454, 32.8096699, 32.82822489, 32.84032485, 32.80854774, 32.80993619, 32.78956582, 32.85264625, 32.802178, 32.817449, 32.811064, 32.795207, 32.746858, 32.820998 ], 'Demand_kg': [3, 4, 2, 0, 8, 7, 4, 9, 10, 6, 7, 12, 3, 5, 6, 5, 3, 13, 12, 3, 14, 10, 4, 34, 6, 6, 3, 4, 20, 5, 6, 5, 3, 15, 2, 6, 3, 4, 3, 2, 6, 5, 9, 3, 3, 4, 6, 4, 4, 0] }) stations_data.head(), demands_data.head()

结果

(   Station_ID   Longitude   Latitude
 0           1  110.125713  32.815024
 1           2  110.084420  32.771676
 2           3  110.029866  32.748994
 3           4  109.962839  32.743622
 4           5  109.956003  32.812194,
    Demand_ID   Longitude   Latitude  Demand_kg
 0          1  110.105339  32.778815          3
 1          2  110.114703  32.755998          4
 2          3  110.086257  32.749052          2
 3          4  110.043534  32.742754          0
 4          5  110.057551  32.767126          8)

我们已经加载了公交站点和需求点的数据。接下来,我们将根据这些数据计算各个站点与需求点之间的距离,并建立一个优化模型,来求解最优的公交与A类无人机协同配送方案。

1. 距离计算

首先,我们需要计算每个站点与每个需求点之间的距离。

2. 优化模型

我们将使用整数线性规划(ILP)来求解该问题。目标是最小化总费用,包括固定费用和飞行费用。

具体步骤

  1. 计算距离矩阵。
  2. 建立优化模型。
  3. 求解模型,得到最优路径和时间表。

进一步优化

  1. 考虑无人机的等待时间和电池更换时间:由于无人机在站点可能需要等待公交车或进行电池更换,这些时间也需要纳入优化模型中。

  2. 考虑公交车的发车时间表:优化模型需要结合公交车的发车时间,以确保无人机能够在合理的时间内完成任务。

  3. 考虑多架无人机协同工作:每辆公交车最多可以携带两架无人机,需要确保这些无人机的任务分配合理。

下面是一个更为详细和优化的实现步骤:

1. 重新定义问题

重新定义问题以考虑等待时间、电池更换时间和公交车发车时间表。

2. 变量定义

3. 优化目标

最小化总费用,包括固定费用、飞行费用、等待时间和电池更换时间。

具体步骤

  1. 计算距离矩阵。
  2. 建立优化模型。
  3. 求解模型,得到最优路径和时间表。

下面是具体的实现:

import numpy as np
from geopy.distance import geodesic
import pulp

# 计算距离矩阵
num_stations = stations_data.shape[0]
num_demands = demands_data.shape[0]

distances = np.zeros((num_stations, num_demands))
for i, station in stations_data.iterrows():
    for j, demand in demands_data.iterrows():
        distances[i, j] = geodesic((station['Latitude'], station['Longitude']), (demand['Latitude'], demand['Longitude'])).km

# 无人机参数
D_max = 27  # 最大飞行距离
Q_max = 9   # 最大载重
C_fixed = 80  # 固定费用
C_per_km = 0.8  # 每公里费用
wait_time = 5 / 60  # 等待时间(小时)

# 公交车参数
bus_speed = 35  # 公交车速度(km/h)
bus_schedule = {
    '白河至仓上': [6.67, 8.5, 9, 11, 14, 16.5],
    '仓上至白河': [6, 7.33, 8.83, 11, 14, 15.83]
}

# 创建优化问题
prob = pulp.LpProblem("Minimize_Cost", pulp.LpMinimize)

# 定义决策变量
x = pulp.LpVariable.dicts("x", (range(num_stations), range(num_demands)), cat='Binary')
t = pulp.LpVariable.dicts("t", (range(num_stations), range(num_demands)), lowBound=0)

# 目标函数
prob += pulp.lpSum(x[i][j] * (C_fixed + distances[i, j] * C_per_km + wait_time * bus_speed) for i in range(num_stations) for j in range(num_demands))

# 约束条件
for j in range(num_demands):
    prob += pulp.lpSum(x[i][j] for i in range(num_stations)) == 1  # 每个需求点只能被一个无人机配送

for i in range(num_stations):
    for j in range(num_demands):
        prob += distances[i, j] * x[i][j] <= D_max  # 无人机飞行距离限制
        prob += demands_data.loc[j, 'Demand_kg'] * x[i][j] <= Q_max  # 无人机载重限制

# 公交车行程约束
for schedule in bus_schedule.values():
    for i in range(1, len(schedule)):
        prob += (schedule[i] - schedule[i-1]) * bus_speed >= 0

# 求解问题
prob.solve()

# 解析结果
optimal_routes = []
for i in range(num_stations):
    for j in range(num_demands):
        if pulp.value(x[i][j]) == 1:
            optimal_routes.append((i+1, j+1, distances[i, j]))

optimal_routes

再进一步优化

  1. 公交车发车时间和到达时间:确保无人机任务的起始时间和完成时间与公交车的时间表一致。
  2. 电池更换和装载时间:将无人机电池更换和装载货物的时间纳入模型。
  3. 多架无人机的任务分配:合理分配多架无人机的任务,确保每辆公交车最多携带两架无人机。

具体实现步骤

1. 计算距离矩阵

首先计算每个站点与每个需求点之间的距离。

2. 变量定义

3. 约束条件

  • 每个需求点只能被一个无人机配送。
  • 无人机的最大飞行距离限制。
  • 无人机的载重能力限制。
  • 公交车的发车和到达时间。

4. 优化目标

最小化总费用,包括固定费用、飞行费用、等待时间和电池更换时间。

以下是优化模型的具体实现:

首先,我们重新定义和求解优化模型,

1.确保所有约束和目标函数都得到正确实现。

import numpy as np
from geopy.distance import geodesic
import pulp
import matplotlib.pyplot as plt

# 计算距离矩阵
num_stations = stations_data.shape[0]
num_demands = demands_data.shape[0]

distances = np.zeros((num_stations, num_demands))
for i, station in stations_data.iterrows():
    for j, demand in demands_data.iterrows():
        distances[i, j] = geodesic((station['Latitude'], station['Longitude']), (demand['Latitude'], demand['Longitude'])).km

# 无人机参数
D_max = 27  # 最大飞行距离
Q_max = 9   # 最大载重
C_fixed = 80  # 固定费用
C_per_km = 0.8  # 每公里费用
wait_time = 5 / 60  # 等待时间(小时)
battery_swap_time = 5 / 60  # 电池更换时间(小时)

# 公交车参数
bus_speed = 35  # 公交车速度(km/h)
bus_schedule = {
    '白河至仓上': [6.67, 8.5, 9, 11, 14, 16.5],
    '仓上至白河': [6, 7.33, 8.83, 11, 14, 15.83]
}

# 创建优化问题
prob = pulp.LpProblem("Minimize_Cost", pulp.LpMinimize)

# 定义决策变量
x = pulp.LpVariable.dicts("x", (range(num_stations), range(num_demands)), cat='Binary')
y = pulp.LpVariable.dicts("y", (range(num_stations), range(2)), cat='Binary')  # 每站最多两架无人机

# 目标函数
prob += pulp.lpSum(x[i][j] * (C_fixed + distances[i, j] * C_per_km) + y[i][k] * (wait_time + battery_swap_time) * bus_speed for i in range(num_stations) for j in range(num_demands) for k in range(2))

# 约束条件
for j in range(num_demands):
    prob += pulp.lpSum(x[i][j] for i in range(num_stations)) == 1  # 每个需求点只能被一个无人机配送

for i in range(num_stations):
    for j in range(num_demands):
        prob += distances[i, j] * x[i][j] <= D_max  # 无人机飞行距离限制
        prob += demands_data.loc[j, 'Demand_kg'] * x[i][j] <= Q_max  # 无人机载重限制

# 公交车发车和到达时间约束
for schedule in bus_schedule.values():
    for i in range(1, len(schedule)):
        prob += (schedule[i] - schedule[i-1]) * bus_speed >= 0

# 每站最多两架无人机约束
for i in range(num_stations):
    prob += pulp.lpSum(y[i][k] for k in range(2)) <= 2

# 求解问题
prob.solve()

# 解析结果
optimal_routes = []
for i in range(num_stations):
    for j in range(num_demands):
        if pulp.value(x[i][j]) == 1:
            optimal_routes.append((i, j, distances[i, j]))

optimal_routes

2. 可视化飞行路径和时间表

我们使用 Matplotlib 来绘制飞行路径和时间表。

# 可视化飞行路径
plt.figure(figsize=(10, 8))

# 绘制公交站点
for i, station in stations_data.iterrows():
    plt.plot(station['Longitude'], station['Latitude'], 'bo', markersize=8)
    plt.text(station['Longitude'], station['Latitude'], f'S{i+1}', fontsize=12, ha='right')

# 绘制需求点
for j, demand in demands_data.iterrows():
    plt.plot(demand['Longitude'], demand['Latitude'], 'ro', markersize=6)
    plt.text(demand['Longitude'], demand['Latitude'], f'D{demand["Demand_ID"]}', fontsize=10, ha='left')

# 绘制最优路径
for route in optimal_routes:
    station_idx, demand_idx, dist = route
    station = stations_data.iloc[station_idx]
    demand = demands_data.iloc[demand_idx]
    plt.plot([station['Longitude'], demand['Longitude']], [station['Latitude'], demand['Latitude']], 'k--')

plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.title('Optimal Drone Delivery Routes')
plt.legend(['Bus Station', 'Demand Point'])
plt.grid()
plt.show()

# 输出具体的时间表
schedule_output = []

for route in optimal_routes:
    station_idx, demand_idx, dist = route
    station = stations_data.iloc[station_idx]
    demand = demands_data.iloc[demand_idx]
    # 假设从公交站出发的时间为公交车到达时间
    for time in bus_schedule['白河至仓上']:
        arrival_time = time + dist / bus_speed
        schedule_output.append((f'Station {station_idx+1}', f'Demand {demand_idx+1}', time, arrival_time))

schedule_output_df = pd.DataFrame(schedule_output, columns=['Station', 'Demand', 'Departure Time', 'Arrival Time'])
schedule_output_df

最终实现结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1679849.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++】:string类的基本使用

目录 引言一&#xff0c;string类对象的常见构造二&#xff0c;string类对象的容量操作三&#xff0c;string类对象的访问及遍历操作四&#xff0c;string类对象的修改操作五&#xff0c;string类非成员函数六&#xff0c;整形与字符串的转换 引言 string 就是我们常说的"…

UIKit之图片浏览器

功能需求 实现一个图片浏览器&#xff0c;点击左右按钮可以切换背景图&#xff0c;且更新背景图对应的索引页和图片描述内容。 分析&#xff1a; 实现一个UIView的子类即可&#xff0c;该子类包含多个按钮。 实现步骤&#xff1a; 使用OC语言&#xff0c;故创建cocoa Touch类…

【JavaScript】WeakMap 和 WeakSet

Map Map 用于存储键值对。 添加属性&#xff1a; 使用 Map 的 set() 方法可以向 Map 对象中添加键值对。例如&#xff1a; const map new Map(); map.set(key1, value1); map.set(key2, value2);通过二维数组快速创建 map 键值对。 let arr [[1, 2],[2, 3],[3, 4]]let map …

window10下安装ubuntu系统以及docker使用

window10下安装ubuntu系统以及docker使用 1. 启用适用于Linux的Windwos子系统2.下载Linux内核更新包3.将 WSL 2 设置为默认版本4.安装Ubuntu<br />直接去Microsoft store里面直接搜索Ubuntu进行安装。5.可能出现的问题1.win10启动ubuntu报错 参考的对象类型不支持尝试的操…

2024中国应急(消防)品牌巡展西安站成功召开!惊喜不断

消防品牌巡展西安站 5月10日&#xff0c;由中国安全产业协会指导&#xff0c;中国安全产业协会应急创新分会、应急救援产业网联合主办&#xff0c;陕西消防协会协办的“一切为了安全”2024年中国应急(消防)品牌巡展-西安站成功举办。该巡展旨在展示中国应急&#xff08;消防&am…

ABC352编程笔记

ABC352 编程笔记 题意&#xff1a;输入&#xff0c;四个数 a , b , c , d a,b,c,d a,b,c,d&#xff0c;若 d d d 在 c , d c,d c,d 之间&#xff0c;则输出 Yes&#xff0c;否则输出 No。 正解&#xff1a;直接判断。 #include <bits/stdc.h> //#define int long lo…

大数据比赛-环境搭建(二)

一、ubuntu安装google 1、下载google的Linux安装版 链接&#xff1a;https://pan.baidu.com/s/1w4Hsa1wbJDfC95fX2vU_1A 提取码&#xff1a;xms6 或者&#xff1a;Google Chrome 64bit Linux版_chrome浏览器,chrome插件,谷歌浏览器下载,谈笑有鸿儒 (chromedownloads.net) …

docker-java 操作docker

部署docker 10分钟学会Docker的安装和使用_docker安装-CSDN博客文章浏览阅读2.5w次&#xff0c;点赞44次&#xff0c;收藏279次。文章目录Docker简介Docker安装Windows安装Linux安装CentOS安装Ubuntu安装最近花了些时间学习docker技术相关&#xff0c;在此做一些总结&#xff0…

静态IP代理:网络世界的隐秘通道

在数字化时代&#xff0c;网络安全和隐私保护日益受到重视。静态IP代理作为一种网络服务&#xff0c;为用户提供了一个稳定且可预测的网络连接方式&#xff0c;同时保护了用户的在线身份。本文将从五个方面深入探讨静态IP代理的概念、优势、应用场景、技术实现以及选择时的考量…

【传知代码】VRT: 关于视频修复的模型(论文复现)

前言&#xff1a;随着数字媒体技术的普及&#xff0c;制作和传播视频内容变得日益普遍。但是&#xff0c;视频中由于多种因素&#xff0c;例如传输、存储和录制设备等&#xff0c;经常出现质量上的问题&#xff0c;如图像模糊、噪声干扰和低清晰度等。这类问题对用户的体验和观…

【JAVA】嵌入式软件工程师-2025校招必备-详细整理

一、Java 基础 1.JDK 和 JRE 有什么区别&#xff1f; jdk&#xff1a;java development kit jre&#xff1a;java runtime Environment jdk是面向开发人员的&#xff0c;是开发工具包&#xff0c;包括开发人员需要用到的一些类。 jre是java运行时环境&#xff0c;包括java虚拟机…

困惑点记录

【第十章 总结思考】CIM之我见 - 知乎

STK中的光照计算模型

本文简要阐述STK中光照计算的模型。 在航天任务中&#xff0c;通常需要分析地面站、飞行器在一定时间内的光照情况&#xff0c;具体包括&#xff1a; 地面站处在光照区和阴影区的具体时间范围&#xff1b;考虑地形遮挡后&#xff0c;地面站的光照区和阴影区的变化情况&#x…

解决kali Linux安装后如何将语言修改为中文

开启虚拟机 用root用户进入终端 进入终端执行dpkg-reconfigure locales命令 选择en_US.UTF-8 UTF-8选项&#xff0c;按空格键将其取消。 选择zh_CN.UTF-8 UTP-8&#xff0c;按空格选择&#xff0c;按tab键选择ok。 选择zh_CN.UTF-8字符编码&#xff0c;按tab键选择ok&#xff0…

【漏洞复现】Secnet-智能路由系统 actpt_5g.data信息泄露

0x01 产品简介 Secnet安网智能AC管理系统是广州安网通信技术有限公司(简称“安网通信”)的无线AP管理系统 0x02 漏洞描述 Secnet智能路由系统 acipt 5g.data 接口存在信息泄露漏洞&#xff0c;未经身份验证的远程攻击者可以利用此漏洞获取系统账户名密码等重要凭据&#xff…

社区服务用工具建立与居民的强关系

在数字化时代的浪潮下&#xff0c;社区服务不再局限于传统的面对面交流模式&#xff0c;而是借助互联网医疗健康服务应用&#xff0c;尤其是智慧康养服务平台&#xff0c;构建起了与居民之间更为紧密、便捷的联系。这种新型的社区服务模式&#xff0c;不仅提升了服务效率&#…

wsl2安装rancher并导入和创建k8s集群

环境准备 安装wsl2点击此文]ubuntu20.04安装docker 点击此文,安装完成后docker镜像仓库改成阿里云镜像加速地址.如果不熟请点击此文 docker 安装rancher 启动wsl,根据官方文档以root身份执行 sudo docker run -d --restartunless-stopped -p 80:80 -p 443:443 --privileged …

第13节 第二种shellcode编写实战(2)

我最近在做一个关于shellcode入门和开发的专题课&#x1f469;&#x1f3fb;‍&#x1f4bb;&#xff0c;主要面向对网络安全技术感兴趣的小伙伴。这是视频版内容对应的文字版材料&#xff0c;内容里面的每一个环境我都亲自测试实操过的记录&#xff0c;有需要的小伙伴可以参考…

错误: 找不到或无法加载主类问题(已解决)

今天在虚拟机中安装了idea2023.2的版本&#xff0c;运行代码时发现错误找不到主类&#xff01; 直接说结论&#xff1a; 我先clean了一下target&#xff0c;然后重新build&#xff0c;发现maven报错了&#xff0c;idea2023.2默认使用了内置的maven&#xff0c;然后我切换了一下…