【传知代码】VRT: 关于视频修复的模型(论文复现)

news2025/1/10 10:40:10

前言:随着数字媒体技术的普及,制作和传播视频内容变得日益普遍。但是,视频中由于多种因素,例如传输、存储和录制设备等,经常出现质量上的问题,如图像模糊、噪声干扰和低清晰度等。这类问题对用户的体验和观看体验产生了直接的负面影响,因此,视频修复技术显得尤为关键。  其重要性不容忽视。

本文所涉及所有资源均在传知代码平台可获取

概述

        视频修复技术(Video Restoration Techniques,VRT)是一种利用计算机视觉和图像处理技术来改善、修复和恢复视频内容的方法。其主要目的是消除视频中存在的噪声、模糊、失真、抖动等问题,使视频内容更清晰、更稳定,并且提高其视觉质量和观感。其实现的作用是:

1)噪声去除:使用去噪算法来消除视频中的各种类型的噪声,例如高斯噪声、椒盐噪声等,以提高图像质量和清晰度。

2)运动补偿:通过分析视频中的运动信息,利用运动估计和补偿技术来减少视频中的运动模糊,使图像更加清晰和稳定。

3)图像恢复:使用插值、补洞和修复算法来修复视频中存在的缺失、损坏或者破坏的图像部分,以恢复视频的完整性和连贯性。

4)超分辨率重建:利用超分辨率重建技术来增加视频的空间分辨率,从而提高图像的清晰度和细节展现能力。

视频修复与单一图像修复的区别在于:前者主要关注从单一图像中恢复丢失或损坏的信息,而后者则涉及对整个视频序列的处理。在进行视频修复时,需要充分考虑帧与帧之间的时间序列关系,这样可以更有效地利用时间信息来进行修复工作。这样的时序关联可能包括相邻帧间的动态运动、变动等相关信息。

关于时间信息的价值:视频里的这些时间数据在理解和修复过程中起到了不可或缺的作用。视频修复过程中,相邻帧的相互联系、动态的变动以及视频序列的动态变化等因素都为其提供了丰富的背景信息。传统的单一图像修复技术不能充分利用这些时间序列信息,而视频修复则专注于通过综合多帧信息来提升修复的效果。

在处理多帧视频时,我们面临了一系列新的挑战,包括多帧之间的对齐、在动态环境中信息的变动以及长时间序列的依赖性等问题。

为了实现更为精确和稳健的视频修复,我们需要构建一个能够最大化利用这些信息的机制。

VRT模型的详细说明

VRT 模型是指视频修复技术(Video Restoration Techniques)的模型,它是一种利用深度学习和计算机视觉技术来改善、修复和恢复视频内容的模型。这些模型通常基于深度神经网络,能够学习视频中的复杂模式和结构,并自动进行修复和增强。其整体框架如下:

Figure 1.绿色圆圈:低质量(LQ)的输入帧;蓝色圆圈:高质量(HQ)的输出帧。t-1,t及t+1为帧序号;虚线是用来描述不同帧融合的。

VRT的总体结构:Video Restoration Transformer(VRT)是一个致力于视频修复任务的深度学习模型。其整体框架由多个尺度组成,每个尺度包含两个关键模块:Temporal Mutual Self Attention(TMSA)和Parallel Warping。VRT的目的是通过并行帧预测与长时序依赖建模的方法来充分利用多帧视频信息实现高效修复。 

VRT具有多尺度结构,各尺度内含有TMSA与Parallel Warping两模块。该设计使模型能够运行于不同分辨率特征,从而较好地拟合视频序列的细节及动态变化情况。

TMSA模块:Temporal Mutual Self Attention负责把视频序列划分成细小的片段,并将相互注意力应用到这些片段中,进行联合运动估计,特征对齐以及特征融合等。同时利用自注意力机制对特征进行提取。该设计使模型可以联合处理多帧信息,较好地解决了长时序依赖建模问题。

Parallel Warping模块:Parallel Warping模块用于通过并行特征变形从相邻帧中进一步融合信息。它利用平行特征变形有效地将相邻帧信息融合到当前帧中。该步骤与特征的引导变形相似,进一步提升了该模型多帧时序信息使用效率。

下图展示了提出的Video Restoration Transformer(VRT)的框架。给定T个低质量输入帧,VRT并行地重建T个高质量帧。它通过多尺度共同提取特征、处理对齐问题,并在不同尺度上融合时间信息。在每个尺度上,VRT具有两种模块:时间互相自注意力和平行变形。为了清晰起见,图中省略了不同尺度之间的下采样和上采样操作。

实验结果表现

VRT在不同视频修复任务上的表现,如下图所示:

不同任务表现 VRT在视频超分辨率、视频去模糊、视频去噪、视频帧插值和时空视频超分辨率等五个任务上都进行了实验。通过对比实验结果,VRT展现了在各项任务中的优越性能,提供了高质量的修复效果。

性能对比 VRT与其他当前主流的视频修复模型进行了性能对比,涵盖了14个基准数据集。实验结果显示,VRT在各个数据集上都明显优于其他模型,表现出色。尤其在某些数据集上,VRT的性能提升高达2.16dB,凸显了其在视频修复领域的卓越性能。

视频修复技术(VRT)的优势和创新点主要体现在以下几个方面:

1. 深度学习驱动的修复模型:VRT采用深度学习技术,如卷积神经网络(CNN)和生成对抗网络(GAN),能够自动学习视频中的复杂模式和结构。相较于传统的基于规则的方法,深度学习模型在处理视频修复任务上表现出更高的灵活性和效果。

2. 端到端的修复过程:VRT模型通常采用端到端的修复过程,即直接从损坏或低质量的视频帧到修复后的视频帧,无需手动干预或多个步骤的流程。这种端到端的方式简化了修复流程,提高了效率。

3. 多种修复技术的综合应用:VRT模型综合运用了多种修复技术,如噪声去除、运动补偿、图像恢复等,能够在多个方面改善视频质量。通过这种综合应用,VRT能够更全面地处理视频中的问题,提供更优质的修复结果。

4. 大规模训练数据的利用:VRT模型通常使用大规模的真实视频数据进行训练,这些数据涵盖了各种不同来源和类型的视频,包括电影、电视节目、监控视频等。通过利用这些数据,VRT模型能够学习到更广泛、更真实的修复模式,提升了修复效果的准确性和鲁棒性。

5. 实时性能和效果的提升:随着硬件和算法的不断进步,现代VRT模型在实时性能和修复效果方面都取得了显著的提升。一些优化的算法和硬件加速技术使得VRT能够在更短的时间内完成修复任务,并且在视觉上提供更加真实和清晰的修复结果。

总的来说,视频修复技术(VRT)利用深度学习等先进技术,结合多种修复技术,综合应用大规模训练数据,实现了对视频内容的高效、自动、全面修复,为视频产业和相关领域带来了巨大的优势和创新点。 VRT在不同任务上的性能提升如下图所示:

核心代码实现

这里给出视频恢复(Video Restoration)模型的测试脚本,用于在测试集上评估模型的性能:

导入依赖库和模块

import argparse
import cv2
import glob
import os
import torch
import requests
import numpy as np
from os import path as osp
from collections import OrderedDict
from torch.utils.data import DataLoader

from models.network_vrt import VRT as net
from utils import utils_image as util
from data.dataset_video_test import VideoRecurrentTestDataset, VideoTestVimeo90KDataset, \
    SingleVideoRecurrentTestDataset, VFI_DAVIS, VFI_UCF101, VFI_Vid4

定义主函数 main()

def main():
    parser = argparse.ArgumentParser()
    # ...(解析命令行参数的设置)
    args = parser.parse_args()

    # 定义设备(使用GPU或CPU)
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # 准备模型
    model = prepare_model_dataset(args)
    model.eval()
    model = model.to(device)
    # ...(根据数据集类型准备测试集)

    # 定义保存结果的目录
    save_dir = f'results/{args.task}'
    if args.save_result:
        os.makedirs(save_dir, exist_ok=True)
    test_results = OrderedDict()
    # ...(初始化用于保存评估结果的数据结构)

    # 遍历测试集进行测试
    for idx, batch in enumerate(test_loader):
        # ...(加载测试数据)
        with torch.no_grad():
            output = test_video(lq, model, args)
        # ...(处理模型输出,保存结果,计算评估指标)
    
    # 输出最终评估结果
    # ...

准备模型和数据集的函数 prepare_model_dataset(args)

def prepare_model_dataset(args):
    # ...(根据任务类型选择合适的模型和数据集)
    return model

测试视频的函数和视频片段的函数

def test_video(lq, model, args):
    # ...(根据需求测试整个视频或分割成多个片段进行测试)
    return output
def test_clip(lq, model, args):
    # ...(根据需求测试整个片段或分割成多个子区域进行测试)
    return output

写在最后

VRT通过深度学习驱动的修复模型、端到端的修复过程、多种修复技术的综合应用、大规模训练数据的利用以及实时性能和效果的提升,实现了对视频内容的高效、自动、全面修复,为视频产业和相关领域带来了重大的优势和创新点。

通过对VRT的全面介绍和深入解析,我们不难发现它在视频修复领域的卓越贡献。VRT通过并行帧预测、长时序依赖建模和多尺度设计等关键创新点,显著提升了视频修复的性能。其在多个任务上的卓越表现以及在实际应用中的广泛潜力,使得VRT成为视频修复领域的前沿技术。
鼓励更多研究者深入挖掘视频修复领域的技术挑战,并通过VRT的经验为该领域的未来发展做出更多贡献。不仅如此,VRT的创新性和通用性也为深度学习在其他领域的研究提供了有益的参考,推动了整个人工智能领域的发展。

详细复现过程的项目源码、数据和预训练好的模型可从该文章下方附件获取。

【传知科技】关注有礼     公众号、抖音号、视频号

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1679837.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【JAVA】嵌入式软件工程师-2025校招必备-详细整理

一、Java 基础 1.JDK 和 JRE 有什么区别? jdk:java development kit jre:java runtime Environment jdk是面向开发人员的,是开发工具包,包括开发人员需要用到的一些类。 jre是java运行时环境,包括java虚拟机…

困惑点记录

【第十章 总结思考】CIM之我见 - 知乎

STK中的光照计算模型

本文简要阐述STK中光照计算的模型。 在航天任务中,通常需要分析地面站、飞行器在一定时间内的光照情况,具体包括: 地面站处在光照区和阴影区的具体时间范围;考虑地形遮挡后,地面站的光照区和阴影区的变化情况&#x…

解决kali Linux安装后如何将语言修改为中文

开启虚拟机 用root用户进入终端 进入终端执行dpkg-reconfigure locales命令 选择en_US.UTF-8 UTF-8选项,按空格键将其取消。 选择zh_CN.UTF-8 UTP-8,按空格选择,按tab键选择ok。 选择zh_CN.UTF-8字符编码,按tab键选择ok&#xff0…

【漏洞复现】Secnet-智能路由系统 actpt_5g.data信息泄露

0x01 产品简介 Secnet安网智能AC管理系统是广州安网通信技术有限公司(简称“安网通信”)的无线AP管理系统 0x02 漏洞描述 Secnet智能路由系统 acipt 5g.data 接口存在信息泄露漏洞,未经身份验证的远程攻击者可以利用此漏洞获取系统账户名密码等重要凭据&#xff…

社区服务用工具建立与居民的强关系

在数字化时代的浪潮下,社区服务不再局限于传统的面对面交流模式,而是借助互联网医疗健康服务应用,尤其是智慧康养服务平台,构建起了与居民之间更为紧密、便捷的联系。这种新型的社区服务模式,不仅提升了服务效率&#…

wsl2安装rancher并导入和创建k8s集群

环境准备 安装wsl2点击此文]ubuntu20.04安装docker 点击此文,安装完成后docker镜像仓库改成阿里云镜像加速地址.如果不熟请点击此文 docker 安装rancher 启动wsl,根据官方文档以root身份执行 sudo docker run -d --restartunless-stopped -p 80:80 -p 443:443 --privileged …

第13节 第二种shellcode编写实战(2)

我最近在做一个关于shellcode入门和开发的专题课👩🏻‍💻,主要面向对网络安全技术感兴趣的小伙伴。这是视频版内容对应的文字版材料,内容里面的每一个环境我都亲自测试实操过的记录,有需要的小伙伴可以参考…

错误: 找不到或无法加载主类问题(已解决)

今天在虚拟机中安装了idea2023.2的版本,运行代码时发现错误找不到主类! 直接说结论: 我先clean了一下target,然后重新build,发现maven报错了,idea2023.2默认使用了内置的maven,然后我切换了一下…

Shell之(数组)

目录 一、shell数组 1.数组的定义 2.定义数组的方法 第一种 第二种 第三种 第四种 3.数组分片 4. 数组字符替换 临时替换 永久替换 5.删除数组 删除指定的下标 删除整组 6.数组遍历和重新定义 7.数组追加元素 方式一:指定位置添加 方法二&a…

【JAVA入门】Day05 - 面向对象

【JAVA入门】Day05 - 面向对象 文章目录 【JAVA入门】Day05 - 面向对象一、对象的设计和使用1.1 类和对象1.2 类的分类 二、封装三、private 关键字四、this 关键字五、构造方法六、JavaBean七、对象的内存图7.1 一个对象的内存图7.2 两个对象的内存图7.3 两个引用指向同一个对…

文心一言 VS 讯飞星火 VS chatgpt (252)-- 算法导论18.2 5题

五、因为叶结点无需指向孩子结点的指针,那么对同样大小的磁盘页面,可选用一个与内部结点不同的(更大的) t 值。请说明如何修改 B 树的创建和插人过程来处理这个变化。如果要写代码,请用go语言。 文心一言: 当我们在B树&#xff…

低空经济:无人机竞赛详解

无人机竞赛市场近年来呈现出蓬勃发展的态势,其市场价值不仅体现在竞赛本身,还体现在推动无人机技术创新、拓展应用场景以及促进产业链发展等多个方面。 一、比赛项目介绍 无人机竞赛通常分为多个项目,包括竞速赛、技巧赛、航拍赛等。每个项目…

slugify,slug格式转换工具

目录 前言 安装 特性 基本功能 生成简单的Slug 处理特殊字符 Unicode支持 高级功能 自定义替换规则 过滤停用词 使用不同的分隔符 处理多种语言 实际应用场景 网站和博客的SEO优化 电子商务平台的产品链接 数据清洗和预处理 总结 前言 在Web开发中,生成易于…

vm 虚拟机 Debian12 开启 root、ssh 登录功能

前言,安装的时候语言就选中文就好了。选择中文,在安装的时候就可以选择国内 163 的源。 开启 ssh 功能 先提权,用 root 账户 su安装 ssh 安装 ssh-server apt install openssh-server启动 ssh systemctl start ssh查看 ssh 状态 systemctl st…

景源畅信电商:做抖音有哪些未开发的蓝海领域?

在互联网信息爆炸的今天,抖音已经成为人们获取信息和娱乐的重要渠道。然而,随着用户数量的增加和内容的丰富,抖音的红海竞争也日益激烈。在这样的背景下,寻找还未被充分开发的蓝海领域,对于内容创作者来说,…

yolov8 模型架构轻量化 | 极致降参数量

模型轻量化加速是深度学习领域的重要研究方向,旨在减小模型的体积和计算复杂度,从而提高在资源受限设备上的运行效率,模型参数量在轻量化加速中扮演着至关重要的角色。 首先,模型参数量直接决定了模型的复杂度和存储空间需求。随…

西南大学计算机考研,选学硕还是专硕?西南大学计算机考研考情分析!

西南大学(Southwest University)是教育部直属,教育部、农业农村部、重庆市共建的重点综合大学,是国家首批"双一流"建设高校,"211工程"和"985工程优势学科创新平台"建设高校。现任党委书…

JVM学习-虚拟机栈

虚拟机栈 每个线程创建时都会创建一个虚拟机栈,其内部保存一个个栈帧,对应一次次Java方法调用,栈是线程私有的。 生命周期: 与线程相同 作用 主管Java程序的运行,它保存方法的局部变量、部分结果、并参与方法的调用和返回。 …