Python 全栈体系【四阶】(四十三)

news2024/11/16 11:50:56

第五章 深度学习

九、图像分割

3. 常用模型

3.4 DeepLab 系列
3.4.1 DeepLab v1(2015)
3.4.1.1 概述

图像分割和图像分类不一样,要对图像每个像素进行精确分类。在使用CNN对图像进行卷积、池化过程中,会导致特征图尺寸大幅度下降、分辨率降低,通过低分辨率特征图上采样生成原图的像素分类信息,容易导致信息丢失,分割边界不精确。DeepLab v1采用了空洞卷积、条件随机场等技术,有效提升了分割准确率。在 Pascal VOC 2012 的测试集 IOU 上达到了 71.6%,排名第一。速度方面,在GPU设备下推理可达每秒8帧。

3.4.1.2 空洞卷积

Dilated/Atrous Convolution(中文叫做空洞卷积或者膨胀卷积) ,是在标准的 convolution map 里注入空洞,以此来增加感受野。以下是一个空洞卷积示例图:

在这里插入图片描述

空洞卷积示例图

在空洞卷积中,通过添加空洞,在不增加参数、不进行降采样的情况下,增加感受野。空洞卷积有两种理解,一是可以理解为将卷积核扩展,如图卷积核为 3*3 但是这里将卷积核变为 5*5 即在卷积核每行每列中间加0。二是理解为在特征图上每隔1行或一列取数与 3*3 卷积核进行卷积。当不填充空洞时,dilation rate为1,当填充1时,dilation rate为2,当填充2时,dilation rate为3。如下图所示:

在这里插入图片描述

不同膨胀率的空洞卷积

空洞卷积最初的提出是为了解决图像分割的问题而提出的,常见的图像分割算法通常使用池化层和卷积层来增加感受野(Receptive Filed),同时也缩小了特征图尺寸(resolution),然后再利用上采样还原图像尺寸,特征图缩小再放大的过程造成了精度上的损失,因此需要一种操作可以在增加感受野的同时保持特征图的尺寸不变,从而代替下采样和上采样操作。

3.4.1.3 条件随机场

条件随机场(Conditional random field,CRF)是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔可夫随机场。

马尔科夫随机场是具有马尔科夫特性的随机场。马尔科夫性质指的是一个随机变量序列按时间先后关系依次排开的时候,第N+1时刻的分布特性,与N时刻以前的随机变量的取值无关。拿天气来打个比方。如果我们假定天气是马尔可夫的,其意思就是我们假设今天的天气仅仅与昨天的天气存在概率上的关联,而与前天及前天以前的天气没有关系。其它如传染病和谣言的传播规律,就是具有马尔可夫性质的。

3.4.1.4 网络结构

DeepLab v1使用VGG-16作为基础模型,为了更适合图像分割任务,做出了以下修改:

  • 将最后三个全连接层(fc6, fc7, fc8)改成卷积层
  • 将最后两个池化层(pool4, pool5)步长由2改成1
  • 将最后三个卷积层(conv5_1, conv5_2, conv5_3)的dilate rate 设置为2
  • 输出层通道数改为21(20个类别,1个背景)
3.4.1.5 能量函数

在这里插入图片描述

条件随机场对分割边沿的改善效果

DeepLab v1使用了全连接条件随机场(Fully-connected Conditional Random Field)来保证分类准确和位置准确。其能量函数:

E ( x ) = ∑ i θ i ( x i ) + ∑ i j θ i j ( x i , x j ) E(x)=\sum_i \theta_i(x_i) + \sum_{ij} \theta_{ij} (x_i, x_j) E(x)=iθi(xi)+ijθij(xi,xj)

训练的目标要最小化能量函数,函数第一项:

θ i ( x i ) = − l o g P ( x i ) \theta_i(x_i) = -logP(x_i) θi(xi)=logP(xi)

第一项用来保证分类的准确率,其中 x i x_i xi表示像素的标签值, P ( x i ) P(x_i) P(xi)表示DCNN的计算结果,准确率越高P(x)越接近1,该项值越小。函数第二项:

θ i j ( x i , x j ) = μ ( x i , x j ) ∑ m = 1 K w m . k m ( f i , f j ) μ ( x i , x j ) = 1    i f    x i ≠ x j , o t h e r w i s e   0 \theta_{ij}(x_i, x_j) = \mu (x_i, x_j) \sum_{m=1}^{K} w_m.k^m(f_i, f_j) \\ \mu (x_i, x_j) = 1 \ \ if \ \ x_i \ne x_j,otherwise \ 0 θij(xi,xj)=μ(xi,xj)m=1Kwm.km(fi,fj)μ(xi,xj)=1  if  xi=xjotherwise 0

其中, μ ( x i , x j ) \mu(x_i, x_j) μ(xi,xj)表示只考虑标签不相同的两个像素点, k m ( f i , f j ) k^m (f_i, f_j) km(fi,fj)为一个高斯核函数,具体表示为:

w 1    e x p ( − ∣ ∣ p i − p j ∣ ∣ 2 2 σ α 2 − ∣ ∣ I i − I j ∣ ∣ 2 2 σ β 2 ) + w 2    e x p ( − ∣ ∣ p i − p j ∣ ∣ 2 2 σ γ 2 ) w_1 \ \ exp(-\frac{||p_i - p_j||^2}{2 \sigma_{\alpha}^2}-\frac{||I_i - I_j||^2}{2 \sigma_{\beta}^2}) + w_2 \ \ exp(-\frac{||p_i - p_j||^2}{2 \sigma_{\gamma}^2}) w1  exp(2σα2∣∣pipj22σβ2∣∣IiIj2)+w2  exp(2σγ2∣∣pipj2)

此函数主要由两个像素点的位置和颜色决定,位置为主、颜色为辅。该公式第一部分由位置(p表示)、颜色共同确定(I表示),第二项由位置确定, σ α , σ β , σ γ \sigma_\alpha, \sigma_\beta, \sigma_\gamma σα,σβ,σγ控制高斯核的比例。

在这里插入图片描述

条件随机场边沿精修效果
3.4.1.6 效果
  • 自对比试验

在这里插入图片描述

左表为采用不同策略下的IOU均值,其中,MSc表示多尺度融合,CRF表示条件随机场,LargFOV表大范围视野。右表为其它模型与该模型各种策略对比。

  • 与FCN-8s和TTI-Zoomout-16的效果对比

在这里插入图片描述

从上到下依次为原图、真实标记、被对比的模型分割效果、DeepLab-CRF分割效果。

3.4.2 DeepLab v2(2017)

DeepLab v2在DeepLab v1的基础上,主要引入了ASPP(Atrous Spatial Pyramid Pooling,膨胀空间金字塔池化)策略,在给定的输入上以不同采样率的空洞卷积并行采样,相当于以多个比例捕捉图像的上下文,从而获得更好的分割性能。ASPP原理如下图所示:

在这里插入图片描述

以下是PASCAL VOC 2012数据集上不同kernel size以及不同大小的膨胀率(atrous sampling rate)的实验对比:

在这里插入图片描述

以下是PASCAL VOC 2012数据集上分割效果展示:

在这里插入图片描述

以下是使用ResNet-101在PASCAL VOC 2012数据集上的实验对比:

在这里插入图片描述

其中,MSC表示多尺度输入最大融合,COCO表示采用在MS-COCO上预训练的模型,Aug表示通过随机缩放增加数据。以下是跟其它模型的对比:

在这里插入图片描述

以下是在Cityscapes数据集上的分割效果:
在这里插入图片描述

以下是分割失败的示例:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1676643.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

旧手机-基于Termux配置服务器(不用拿去换钢盆了)

Hi,大家好,我是抢老婆酸奶的小肥仔。 大家用手机这么多年了,手上或多或少都有一两个被替换下来的旧手机,也不用拿去换啥钢盆了,使用Termux可以将旧手机改造成一个服务器。 不多说,直接开干。 1、安装app…

Java应用程序的本地内存跟踪分析

本文将讨论本机内存跟踪 (NMT),我们可以使用它来隔离在 VM 级别增长的任何异常内存。 1.什么是本机内存? 本机内存是指计算机系统上运行的应用程序或程序可直接访问的内存空间。它是程序在执行期间存储和操作数据的内存区域。本机内存不同于托管内存&a…

单调栈练习

最大矩形面积 如果栈为空&#xff0c;或者新的元素是大于栈顶元素的&#xff0c;那么新来的元素不会破坏栈的单调性&#xff0c;那么就把这个柱子入栈。 特别注意&#xff1a;这里的s.empty()和s.top().height < a不能调换顺序&#xff0c;包括后面的判断也要先判断栈是否为…

分析 vs2019 cpp20 规范的 STL 库模板 function ,源码注释并探讨几个问题

&#xff08;1 探讨一&#xff09;第一个尝试弄清的问题是父类模板与子类模板的模板参数的对应关系&#xff0c;如下图&#xff1a; 我们要弄清的问题是创建 function 对象时&#xff0c;传递的模板参数 _Fty , 传递到其父类 _Func_class 中时 &#xff0c;父类的模板参数 _Ret…

QT状态机4-使用并行状态来避免组合爆炸

#include "MainWindow.h" #include "ui_MainWindow.h"MainWindow::MainWindow(QWidget *parent):

基于EKF扩展卡尔曼滤波的一阶环形倒立摆控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于EKF扩展卡尔曼滤波的一阶环形倒立摆控制系统simulink建模与仿真。基于扩展卡尔曼滤波&#xff08;Extended Kalman Filter, EKF&#xff09;的一阶环形倒立摆控制系统&…

分布式搜索-elaticsearch基础 安装es

这里是在虚拟机的Linux系统里安装es的教程: 1.创建网络 在Finashell终端输入指令 docker network create es-net 2.将es.tar安装包放入tmp的目录下 输入指令加载镜像&#xff1a;docker load -i es.tar 3.再运行docker 命令 docker run -d \--name es \-e "ES_JAVA_O…

NVM安装及VUE创建项目的N种方式

VUE 参考官网&#xff1a;https://cli.vuejs.org/zh/guide/ NVM安装 我们开发过程中常常遇到nodejs版本不适配的问题&#xff0c;需要切换到不同版本的nodejs&#xff0c;nodejs卸载安装麻烦&#xff0c;这就需要用到nvm了。 nvm 全名 node.js version management 顾名思义是…

基于SVPWM的飞轮控制系统的simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于SVPWM的飞轮控制系统的simulink建模与仿真。SVPWM的核心思想是将逆变器输出的三相电压矢量在两相静止坐标系&#xff08;αβ坐标系&#xff09;中表示&#xff0c;通过控…

苹果智能戒指新专利,用于与VR头显或Vision Pro配合使用

近日&#xff0c;美国专利商标局向苹果公司授予了一项新专利&#xff0c;该专利涉及一种可扩展的智能戒指配件。最新的专利指出&#xff0c;该配件专门用于与VR头显或Vision Pro配合使用&#xff0c;这比戴VR手套更准确&#xff0c;用户可以根据应用场景佩戴一个或多个戒指。 …

一本书打通SLAM在智能汽车/自动驾驶领域应用

自动驾驶技术已成为当今数字化时代汽车行业的热点话题之一。随着技术的不断成熟&#xff0c;越来越多的车辆采用激光SLAM&#xff08;即时定位与地图构建&#xff09;和视觉SLAM技术&#xff0c;实现更高层次的智能网联汽车。SLAM技术在智能网联汽车中的应用是非常重要的&#…

数据结构——01-抽奖数人-链表-实验题目与解答

数据结构抽奖数人链表实验题目与解答 一、**实验题目** 抽奖游戏&#xff1a; n个人围成一圈&#xff0c;由第一个人开始&#xff0c;依次报数&#xff0c;数到第m人&#xff0c;便抽出来作为中奖人&#xff0c;然后从他的下一个人数起&#xff0c;数到第m人&#xff0c;再抽…

免费思维13招之十一:利润型思维

免费思维13招之十一:利润型思维 免费思维的另一大战略思维——利润型思维。 什么是利润型思维呢?就是用后期的利润来支付现在的成本。也就是“花未来的钱,办现在的事”。 我们在销售自己的产品时候,最容易犯的一个件事,就是降价,我们先来看一个案例: 前几年,有一个卖…

2025CISP深圳国际体育展引领运动潮流,展中国体育辉煌

2025CISP深圳国际体育展将于2月27日至3月1日在深圳福田会展中心举行&#xff0c;参展企业超300家&#xff0c;展览规模达20000平方米&#xff0c;参展企业数量、品牌和产品品类均创历史新高。现场汇集了全球最前沿的体育用品&#xff0c;成为体育产业的风向标。无论你是体育爱好…

ubuntu20.04 ROS 环境下使用速腾80线激光雷达

1.相关系统环境 系统版本:ubuntu 20.04 ROS版本&#xff1a;ROS1 - noetic 激光雷达型号&#xff1a;RoboSense Ruby &#xff08;更新于2024.5.14&#xff09; 2.网口配置&#xff1a; 将PC/工控机的网口配置为&#xff1a; ipv4&#xff0c;方式设置为手动 ip地址、掩码以…

WD—C++课前作业—30题

怎么会手和脚都在桌子上 目录 31&#xff0c;声明一个类 String,其数据成员为 char head[100],构造函数 String(char*Head)实现 head 的初始化&#xff0c;成员函数 void reverse()实现 head 内字符串的逆序存放&#xff0c;成员函数 void print()实现 head 内字符串的输出。…

【LAMMPS学习】九、LAMMPS脚本 示例

9. 示例脚本 LAMMPS 发行版包含一个包含许多示例问题的示例子目录。许多是二维模型&#xff0c;运行速度快且易于可视化&#xff0c;在台式机上运行最多需要几分钟。每个问题都有一个输入脚本 (in.*)&#xff0c;并在运行时生成一个日志文件 (log.*)。有些使用初始坐标的数据文…

Scrapy爬虫:利用代理服务器爬取热门网站数据

在当今数字化时代&#xff0c;互联网上充斥着大量宝贵的数据资源&#xff0c;而爬虫技术作为一种高效获取网络数据的方式&#xff0c;受到了广泛的关注和应用。本文将介绍如何使用Scrapy爬虫框架&#xff0c;结合代理服务器&#xff0c;实现对热门网站数据的高效爬取&#xff0…

Spring Cloud系列—Spring Cloud Gateway服务网关的部署与使用指南

Gateway网关 文章目录 Gateway网关1. 网关基本简介1.1 什么是网关1.2 为什么需要网关&#xff1f; 2. 快速搭建gateway网关2.1 创建新模块2.2 引入依赖2.3 编写启动类2.4 配置路由规则2.5 测试 3. 路由过滤4. 过滤器4.1 简介4.2 网关过滤器4.2.2 种类 4.3 自定义过滤器4.3.1 自…

能播放SWF文件的FlashPlayer播放器

问题&#xff1a; 你是不是遇到了 flash 动画 放不了了&#xff1f; 以前的flash游戏玩不了了 在网上很难找到好用的&#xff0c;免费Flashplayer播放器&#xff0c; 找到的也没法保存.exe 以前买的课件放不了了 一打开就更新提示&#xff1a; 再不就是意外能打开了但【创建…