基于YOLOV8复杂场景下船舶目标检测系统

news2024/11/29 8:52:01

1. 背景

海洋作为地球上70%的表面积,承载着人类生活、经济发展和生态系统的重要功能。船舶作为海洋活动的主要载体之一,在海上运输、资源开发、环境监测等方面发挥着重要作用。复杂海洋环境下的船舶目标检测成为了海事管理、海洋资源开发和环境保护等领域的关键技术之一。

2. YOLOv8算法

为什么我应该使用 YOLOv8?

  • YOLOv8 具有许多开发人员方便的功能,从易于使用的 CLI 到结构良好的 Python 包。
  • YOLO 周围有一个庞大的社区,围绕 YOLOv8 模型的社区也在不断壮大,这意味着计算机视觉圈子里有很多人在你需要指导时可以为您提供帮助。YOLOv8在COCO上实现了很高的准确性。例如,YOLOv8m模型 - 中等模型 - 在COCO上测量时达到50.2%的mAP。当针对Roboflow 100(专门评估各种任务特定域上的模型性能的数据集)进行评估时,YOLOv8的得分明显优于YOLOv5。本文后面的性能分析中提供了有关此内容的更多信息。此外,YOLOv8 中方便开发人员的功能也很重要。与其他模型相反,任务被拆分到您可以执行的许多不同 Python 文件中,YOLOv8 带有一个 CLI,使训练模型更加直观。这是对 Python 包的补充,该包提供了比以前的模型更无缝的编码体验。当您考虑使用模型时,YOLO 周围的社区值得注意。许多计算机视觉专家都知道 YOLO 及其工作原理,并且网上有很多关于在实践中使用 YOLO 的指导。尽管 YOLOv8 在撰写本文时是新的,但网上有许多指南可以提供帮助。以下是一些学习资源,您可以使用它们来提高您对 YOLO 的了解:
  • Roboflow 模型上的 YOLOv8 模型卡
  • 如何在自定义数据集上训练YOLOv8模型
  • 如何在自定义数据集上训练YOLOv8模型
  • 用于训练YOLOv8目标检测模型的谷歌Colab笔记本
  • 用于训练YOLOv8分类模型的谷歌Colab笔记本
  • 用于训练YOLOv8分割模型的谷歌Colab笔记本
  • 使用YOLOv8和ByteTRACK跟踪和计数车辆)让我们深入了解架构以及 YOLOv8 与以前的 YOLO 模型的不同之处。

2.1 YOLOv8检测网络

在这里插入图片描述

2.2 模型结构

如下图, 左侧为 YOLOv5-s,右侧为 YOLOv8-s。
在暂时不考虑 Head 情况下,对比 YOLOv5 和 YOLOv8 的 yaml 配置文件可以发现改动较小。
在这里插入图片描述
在这里插入图片描述

3. 软件界面功能

  1. 可用于实时检测各类复杂场景种的船舶位置,并显示目标数量;
  2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测;
  3. 界面可实时显示目标位置、目标总数、置信度、用时等信息;
  4. 支持图片或者视频的检测结果保存;

4. 数据集与训练

数据集为各类复杂场景下的船舶图片,并使用Labelimg标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含5090张图片,其中训练集包含4576张图片,验证集包含509张图片,测试包含5张图片。
该数据集是专为研究和解决复杂场景下船舶目标检测问题而设计。包含多样性丰富的环境,如交通繁忙的港口、船只密集的渔业区,以及船与岸边混合交通场景。与传统的船舶目标检测数据集不同,本数据集特意考虑了在实际应用场景中常见但在数据集中经常被忽视的问题。例如,船舶在图像或视频帧中不一定是主体,有时仅作为背景出现。此外,数据集还包括船只部分或完全被其他对象遮挡的情况。这些特点使得本数据集非常适用于开发和评估目标检测算法在复杂、多变和部分遮挡条件下的性能。数据集旨在推动船舶目标检测和相关领域的研究进展,以满足日益增长的实际应用需求,例如航海安全、渔业管理以及海洋环境保护等。
在这里插入图片描述
在这里插入图片描述
data.yaml的具体内容如下:

train: D:\BoatDetection\datasets\Data\train
val: D:\BoatDetection\datasets\Data\val
nc: 1
names: ['boat']

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

from ultralytics import YOLO# 加载预训练模型
model = YOLO("yolov8n.pt")
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='D:\BoatDetection\datasets\Data\data.yaml', epochs=300, batch=4)  # 训练模型

4.1 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述
本文训练结果如下:
在这里插入图片描述
PR曲线:
在这里插入图片描述

5. 检测结果识别

在这里插入图片描述

6. 结论与展望

基于YOLOv8的船舶目标检测系统为复杂海洋环境下的船舶监测与管理提供了一种高效准确的解决方案。未来,随着人工智能和深度学习技术的不断发展,该系统将进一步提升在海洋领域的应用价值,为构建美丽海洋、实现可持续发展做出更大贡献。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1668143.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

鸿蒙开发学习:初探【ArkUI-X】

ArkTS 是华为自研的开发语言。它在TypeScript(简称TS)的基础上,匹配 ArkUI 框架,扩展了声明式 UI 、状态管理等相应的能力,让开发者以更简洁、更自然的方式开发跨端应用。 ArkUI-X 进一步将 ArkUI 扩展到了多个 OS 平台…

公有云Linux模拟TCP三次挥手与四次握手(Wireshark抓包验证版)

目录 写在前面环境准备实验步骤1. 安装nc工具2. 使用nc打开一个连接2.1 公有云-安全组放行对应端口(可选) 3. 打开Wireshark抓包工具4. 新开终端,进行连接5. 查看抓包文件,验证TCP三次握手与四次挥手TCP三次握手数据传输TCP四次挥…

C++——二叉树搜索树

前面写了初阶数据结构——二叉树;本文内容是来对它来进行结尾 目录 一概念 二实现 2.1查找 2.2插入 2.3删除 完整源代码 三二叉树的应用 四二叉搜索树的性能分析 五二叉搜索树相关的面试题 一概念 二叉搜索树又称二叉排序树,它或者是一棵空树…

牛津大学和上海交大将SAM和Flow应用于移动目标,简单而有效,轻松分割运动目标!

光流可以在运动物体分割中发现运动物体并为分割提供清晰的边界。然而,如果物体暂时静止,就会面临分割挑战。 而我们知道SAM可以很好的分割静态图像对象。因此,是否可以利用SAM与光流结合来在视频中进行移动物体分割? 今天给大家介…

开源web在线数据库设计软件 —— 筑梦之路

GitHub - drawdb-io/drawdb: Free, simple, and intuitive online database design tool and SQL generator. 简介 DrawDB是一款多功能且用户友好的在线工具,允许用户轻松设计数据库实体关系。通过简单直观的界面,DrawDB使用户能够创建图表、导出SQL脚本…

Spring6 的JdbcTemplate的JDBC模板类的详细使用说明

1. Spring6 的JdbcTemplate的JDBC模板类的详细使用说明 文章目录 1. Spring6 的JdbcTemplate的JDBC模板类的详细使用说明每博一文案2. 环境准备3. 数据准备4. 开始4.1 从数据表中插入(添加)数据4.2 从数据表中修改数据4.3 从数据表中删除数据4.4 从数据表中查询一个对象4.5 从数…

kafka安装及收发消息

kafka需要与zookeeper配合使用,但是从2.8版本kafka引入kraft,也就是说在2.8后,zookeeper和kraft都可以管理kafka集群,这里我们依然采用zookeeper来配合kafka。 1、首先我们下载zookeeper 下载地址为 https://zookeeper.apache.org…

openlayers实现绘制图标,并实现图标的聚合功能

点聚合说明 点聚合功能是指将地图上密集的点数据聚合成一个更大的点或者其他形状,以改善地图的可视化效果和性能。点聚合功能通常用于在地图上显示大量的点标记,例如地图上的POI(兴趣点)、传感器数据等。通过点聚合功能&#xff…

【机器学习300问】86、简述超参数优化的步骤?如何寻找最优的超参数组合?

本文想讲述清楚怎么样才能选出最优的超参数组合。关于什么是超参数?什么是超参数组合?本文不赘述,在之前我写的文章中有详细介绍哦! 【机器学习300问】22、什么是超参数优化?常见超参数优化方法有哪些?htt…

[Bug]:由于中国防火墙,无法连接 huggingface.co

问题描述 : OSError: We couldnt connect to https://huggingface.co to load this file, couldnt find it in the cached files and it looks like youscan/ukr-roberta-base is not the path to a directory containing a file named config. Json. Checkout your internet …

支持视频切片的开源物联网平台

软件介绍 MzMedia开源视频联动物联网平台是一个简单易用的系统,该平台支持主流短视频平台(如抖音、快手、视频号)的推流直播功能,同时提供视频切片等功能。系统后端采用Spring Boot,前端采用Vue3和Element Plus,消息服…

[C++初阶]string的几道oj题

1.LCR 192. 把字符串转换成整数 (atoi) 这题难度不大,我这里采取遍历跳过空格的方式,我先展示出我的代码,然后慢慢讲解: class Solution { public:int myAtoi(string str) {if (str.empty()) return 0;int lengthstr.size();int i0;int symbol1;int sum0;while(i&l…

C++组合类

类的数据成员不但可以是基本类型,也可以是其它类的对象。 组合类就是指一个类包含其他类的对象作为该类的数据成员。 当组合类创建对象时,其中包含的各个数据成员对象应首先被创建。因此,在创建类的对象时,既要对本类的基本…

2024小红书电商实战营,养号打造IP/选爆品/开店铺/爆款笔记/等等(24节)

我们非常荣幸地为大家带来2024小红书电商实战营的第一期,在这里我们将带领大家一起深入学习如何利用小红书平台,实现个人品牌的发展和商业利益的增长。 首先,我们将讨论养号的重要性以及如何打造个人品牌。无论是建立自己的受众群体还是提高…

java基础知识点总结2024版(8万字超详细整理)

java基础知识点总结2024版(超详细整理) 这里写目录标题 java基础知识点总结2024版(超详细整理)java语言的特点1.简单性2.面向对象3.分布式4.健壮性5.安全性6.体系结构中立7.可移植性8.解释性9.多线程10.动态性 初识java中的main方…

刨析YOLOv8的改进模块

1、YOLOv5回顾 这里粗略回顾一下,这里直接提供YOLOv5的整理的结构图吧:Backbone:CSPDarkNet结构,主要结构思想的体现在C3模块,这里也是梯度分流的主要思想所在的地方;PAN-FPN:双流的FPN,必须香,也必须快,但是量化还是有些需要图优化才可以达到最优的性能,比如cat前后…

【机器学习300问】87、学习率这种超参数在优化时选择随机搜索方法,为什么要在对数尺度范围进行随机搜索?

在超参数优化过程中,对数尺度范围进行随机采样对于某些类型的超参数来说是非常有效的,特别是当超参数的有效值跨越几个数量级时。学习率就是这样一种超参数,它可以从非常小(例如)到相对大的值(例如&#xf…

Java RMI SERVER命令执行漏洞

Java RMI SERVER命令执行漏洞 一、介绍二、原理三、复现准备四、漏洞复现 一、介绍 RMI全称是Remote Method Invocation(远程方法调用),是专为Java环境设计的远程方法调用机制,远程服务器提供API,客户端根据API提供相…

57. 【Android教程】相机:Camera

相机现在已经不仅仅是手机必备神器了,甚至相机的拍照质量已经是很多人买手机的首选条件了。而对于相机而言主要有两大功能:拍照片和拍视频。Android 为此两种方式: 相机 intent相机 API 本节我们就一起来看看相机的具体用法。 1. 打开 Camer…

STC8增强型单片机开发day03

中断系统INT 中断的概念 中断系统是为使 CPU 具有对外界紧急事件的实时处理能力而设置的。 当中央处理机 CPU 正在处理某件事的时候外界发生了紧急事件请求,要求 CPU 暂停当前的工作,转而去处理这个紧急事件,处理完以后,再回到原来被中断的…