鸿蒙内核源码分析(共享内存) | 进程间最快通讯方式

news2024/11/29 10:50:47

运行机制

共享好端端的一词,近些年被玩坏了,共享单车,共享充电宝,共享办公室,共享雨伞… 甚至还有共享女朋友,真是人有多大胆,共享有多大产。但凡事太尽就容易恶心到人,自己也一度被 共享内存 恶心到了,一直不想碰它,拖到了现在才写。

共享内存的原理简单,目的是为了进程间通讯,方法是通过映射到同一块物理内存。它是一种稀缺资源由内核按资源池方式管理,数量有限,默认是 192个,用资源ID唯一标识,用户进程需要时通过系统调用向内核申请共享内存大小,管理器从资源池中分配一个可用资源ID,并向物理内存申请对应的物理页框。

如何使用共享内存就涉及到了内存模块最重要的概念 映射,不清楚的可以翻看系列相关篇。有共享需求的进程在各自的进程空间中划出一个线性区映射到共享内存段,那如何找到这个共享内存段呢 ? 由系统调用提供操作接口,简单说是先通过参数key创建共享资源ID(shmid),再由shmid来连接/删除/控制 共享内存。详见本篇末尾的4个系统调用 Shm***

如何实现?

这是笔者看完内核共享内存模块画出来的图,尽量用一张图表达一个模块的内容,因为百文是在给源码注释的过程中产生的,所以会画出这种比较怪异的图,有代码,也有模型,姑且称之为 代码模型图:

图分 管理 和 映射使用 两部分解读。 为了精简,代码展示只留下骨干,删除了判断,检查的代码。

管理部分
  • 初始化共享内存,共享内存是以资源池的方式管理的,上来就为全局变量g_shmSegs向内核堆空间申请了g_shmInfo.shmmnistruct shmIDSource
    #define SHM_MNI 192 //共享内存总数 默认192
    // 共享内存模块设置信息
    struct shminfo {
      unsigned long shmmax, shmmin, shmmni, shmseg, shmall, __unused[4];
    };
    STATIC struct shminfo g_shmInfo = { //描述共享内存范围的全局变量
      .shmmax = SHM_MAX,//共享内存单个上限 4096页 即 16M
      .shmmin = SHM_MIN,//共享内存单个下限 1页 即:4K
      .shmmni = SHM_MNI,//共享内存总数 默认192 
      .shmseg = SHM_SEG,//每个用户进程可以使用的最多的共享内存段的数目 128
      .shmall = SHM_ALL,//系统范围内共享内存的总页数,4096页 
      };
    //共享内存初始化
      UINT32 ShmInit(VOID)
      {
          // ..
          ret = LOS_MuxInit(&g_sysvShmMux, NULL);//初始化互斥
          g_shmSegs = LOS_MemAlloc((VOID *)OS_SYS_MEM_ADDR, sizeof(struct shmIDSource) * g_shmInfo.shmmni);//分配shm段数组
          (VOID)memset_s(g_shmSegs, (sizeof(struct shmIDSource) * g_shmInfo.shmmni),
                      0, (sizeof(struct shmIDSource) * g_shmInfo.shmmni));//数组清零
          for (i = 0; i < g_shmInfo.shmmni; i++) {
              g_shmSegs[i].status = SHM_SEG_FREE;//节点初始状态为空闲
              g_shmSegs[i].ds.shm_perm.seq = i + 1;//struct ipc_perm shm_perm;系统为每一个IPC对象保存一个ipc_perm结构体,结构说明了IPC对象的权限和所有者
              LOS_ListInit(&g_shmSegs[i].node);//初始化节点
          }
          g_shmUsedPageCount = 0;
          return LOS_OK;
      }
  • 系列篇多次提过,每个功能模块都至少有一个核心结构体来支撑模块的运行,进程是PCB,任务是TCB,而共享内存就是shmIDSource
    struct shmIDSource {//共享内存描述符
          struct shmid_ds ds; //是内核为每一个共享内存段维护的数据结构
          UINT32 status;	//状态 SHM_SEG_FREE ...
          LOS_DL_LIST node; //节点,挂VmPage
      #ifdef LOSCFG_SHELL
          CHAR ownerName[OS_PCB_NAME_LEN];
      #endif
      };

首先shmid_ds是真正描述共享内存信息的结构体,记录了本次共享内存由谁创建,大小,用户/组,访问时间等等。

    //每个共享内存段在内核中维护着一个内部结构shmid_ds
      struct shmid_ds {
          struct ipc_perm shm_perm;///< 操作许可,里面包含共享内存的用户ID、组ID等信息
          size_t shm_segsz;	///< 共享内存段的大小,单位为字节
          time_t shm_atime;	///< 最后一个进程访问共享内存的时间	
          time_t shm_dtime; 	///< 最后一个进程离开共享内存的时间
          time_t shm_ctime; 	///< 创建时间
          pid_t shm_cpid;		///< 创建共享内存的进程ID
          pid_t shm_lpid;		///< 最后操作共享内存的进程ID
          unsigned long shm_nattch;	///< 当前使用该共享内存段的进程数量
          unsigned long __pad1;	//保留扩展用
          unsigned long __pad2;
      };
    //内核为每一个IPC对象保存一个ipc_perm结构体,该结构说明了IPC对象的权限和所有者
      struct ipc_perm {
          key_t __ipc_perm_key;	//调用shmget()时给出的关键字
          uid_t uid;				//共享内存所有者的有效用户ID
          gid_t gid;				//共享内存所有者所属组的有效组ID
          uid_t cuid;				//共享内存创建 者的有效用户ID
          gid_t cgid;				//共享内存创建者所属组的有效组ID
          mode_t mode;			//权限 + SHM_DEST / SHM_LOCKED /SHM_HUGETLB 标志位
          int __ipc_perm_seq;		//序列号
          long __pad1;			//保留扩展用
          long __pad2;
      };  

status 表示这段共享内存的状态,因为是资源池的方式,只有SHM_SEG_FREE的状态才可供分配,进程池和任务池也是这种管理方式。

      #define SHM_SEG_FREE    0x2000	//空闲未使用
      #define SHM_SEG_USED    0x4000	//已使用
      #define SHM_SEG_REMOVE  0x8000	//删除

node双向链表上挂的是一个个的物理页框VmPage,这是核心属性,数据将被存在这一个个物理页框中。ShmAllocSeg为具体的分配函数

    STATIC INT32 ShmAllocSeg(key_t key, size_t size, INT32 shmflg)
      {
          // ... 
          count = LOS_PhysPagesAlloc(size >> PAGE_SHIFT, &seg->node);//分配共享页面,函数内部把node都挂好了.
          if (count != (size >> PAGE_SHIFT)) {//当未分配到足够的内存时,处理方式是:不稀罕给那么点,舍弃!
              (VOID)LOS_PhysPagesFree(&seg->node);//释放节点上的物理页框
              seg->status = SHM_SEG_FREE;//共享段变回空闲状态
              return -ENOMEM;
          }
          ShmSetSharedFlag(seg);//将node的每个页面设置为共享页
          g_shmUsedPageCount += size >> PAGE_SHIFT;
          seg->status |= SHM_SEG_USED;	//共享段贴上已在使用的标签
          seg->ds.shm_perm.mode = (UINT32)shmflg & ACCESSPERMS;
          seg->ds.shm_perm.key = key;//保存参数key,如此 key 和 共享ID绑定在一块
          seg->ds.shm_segsz = size;	//共享段的大小
          seg->ds.shm_perm.cuid = LOS_GetUserID();	//设置用户ID
          seg->ds.shm_perm.uid = LOS_GetUserID();		//设置用户ID
          seg->ds.shm_perm.cgid = LOS_GetGroupID();	//设置组ID
          seg->ds.shm_perm.gid = LOS_GetGroupID();	//设置组ID
          seg->ds.shm_lpid = 0; //最后一个操作的进程
          seg->ds.shm_nattch = 0;	//绑定进程的数量					
          seg->ds.shm_cpid = LOS_GetCurrProcessID();	//获取进程ID
          seg->ds.shm_atime = 0;	//访问时间
          seg->ds.shm_dtime = 0;	//detach 分离时间 共享内存使用完之后,需要将它从进程地址空间中分离出来;将共享内存分离并不是删除它,只是使该共享内存对当前的进程不再可用
          seg->ds.shm_ctime = time(NULL);//创建时间
      #ifdef LOSCFG_SHELL
          (VOID)memcpy_s(seg->ownerName, OS_PCB_NAME_LEN, OsCurrProcessGet()->processName, OS_PCB_NAME_LEN);
      #endif
          return segNum;
      }
映射使用部分
  • 第一步: 创建共享内存 要实现共享内存,首先得创建一个内存段用于共享,干这事的是ShmGet
    /*!
      * @brief ShmGet	
      *	得到一个共享内存标识符或创建一个共享内存对象
      * @param key	建立新共享内存对象 标识符是IPC对象的内部名。为使多个合作进程能够在同一IPC对象上汇聚,需要提供一个外部命名方案。
              为此,每个IPC对象都与一个键(key)相关联,这个键作为该对象的外部名,无论何时创建IPC结构(通过msgget、semget、shmget创建),
              都应给IPC指定一个键, key_t由ftok创建,ftok当然在本工程里找不到,所以要写这么多.
      * @param shmflg	IPC_CREAT IPC_EXCL
                  IPC_CREAT:	在创建新的IPC时,如果key参数是IPC_PRIVATE或者和当前某种类型的IPC结构无关,则需要指明flag参数的IPC_CREAT标志位,
                              则用来创建一个新的IPC结构。(如果IPC结构已存在,并且指定了IPC_CREAT,则IPC_CREAT什么都不做,函数也不出错)
                  IPC_EXCL:	此参数一般与IPC_CREAT配合使用来创建一个新的IPC结构。如果创建的IPC结构已存在函数就出错返回,
                              返回EEXIST(这与open函数指定O_CREAT和O_EXCL标志原理相同)
      * @param size	新建的共享内存大小,以字节为单位
      * @return	
      *
      * @see
      */
    INT32 ShmGet(key_t key, size_t size, INT32 shmflg)
      {
          SYSV_SHM_LOCK();
          if (key == IPC_PRIVATE) {
              ret = ShmAllocSeg(key, size, shmflg);
          } else {
              ret = ShmFindSegByKey(key);//通过key查找资源ID
              ret = ShmAllocSeg(key, size, shmflg);//分配一个共享内存
          }
          SYSV_SHM_UNLOCK();
          return ret;
      }
  • 第二步: 进程线性区绑定共享内存 shmat()函数的作用就是用来启动对该共享内存的访问,并把共享内存连接到当前进程的地址空间。,ShmAt的第一个参数其实是ShmGet成功时的返回值 ,ShmatVmmAlloc负责分配一个可用的线性区并和共享内存映射好
    /*!
      * @brief ShmAt	
      * 用来启动对该共享内存的访问,并把共享内存连接到当前进程的地址空间。
      * @param shm_flg 是一组标志位,通常为0。
      * @param shmaddr 指定共享内存连接到当前进程中的地址位置,通常为空,表示让系统来选择共享内存的地址。
      * @param shmid	是shmget()函数返回的共享内存标识符
      * @return	
      * 如果shmat成功执行,那么内核将使与该共享存储相关的shmid_ds结构中的shm_nattch计数器值加1
      shmid 就是个索引,就跟进程和线程的ID一样 g_shmSegs[shmid] shmid > 192个
      * @see
      */
      VOID *ShmAt(INT32 shmid, const VOID *shmaddr, INT32 shmflg)
      {
          struct shmIDSource *seg = NULL;
          LosVmMapRegion *r = NULL;
          ret = ShmatParamCheck(shmaddr, shmflg);//参数检查
          SYSV_SHM_LOCK();
          seg = ShmFindSeg(shmid);//找到段
          ret = ShmPermCheck(seg, acc_mode);
          seg->ds.shm_nattch++;//ds上记录有一个进程绑定上来
          r = ShmatVmmAlloc(seg, shmaddr, shmflg, prot);//在当前进程空间分配一个线性区并映射到共享内存
          r->shmid = shmid;//把ID给线性区的shmid
          r->regionFlags |= VM_MAP_REGION_FLAG_SHM;//这是一个共享线性区
          seg->ds.shm_atime = time(NULL);//访问时间
          seg->ds.shm_lpid = LOS_GetCurrProcessID();//进程ID
          SYSV_SHM_UNLOCK();
          return (VOID *)(UINTPTR)r->range.base;
      }
  • 第三步: 控制/使用 共享内存,这才是目的,前面的都是前戏
    /*!
      * @brief ShmCtl	
      * 此函数可以对shmid指定的共享存储进行多种操作(删除、取信息、加锁、解锁等)
      * @param buf	是一个结构指针,它指向共享内存模式和访问权限的结构。
      * @param cmd	command是要采取的操作,它可以取下面的三个值 :
          IPC_STAT:把shmid_ds结构中的数据设置为共享内存的当前关联值,即用共享内存的当前关联值覆盖shmid_ds的值。
          IPC_SET:如果进程有足够的权限,就把共享内存的当前关联值设置为shmid_ds结构中给出的值
          IPC_RMID:删除共享内存段
      * @param shmid	是shmget()函数返回的共享内存标识符
      * @return	
      *
      * @see
      */
      INT32 ShmCtl(INT32 shmid, INT32 cmd, struct shmid_ds *buf)
      {
          SYSV_SHM_LOCK();
          switch (cmd) {
              case IPC_STAT:
              case SHM_STAT://取段结构
                  ret = LOS_ArchCopyToUser(buf, &seg->ds, sizeof(struct shmid_ds));//把内核空间的共享页数据拷贝到用户空间
                  if (cmd == SHM_STAT) {
                      ret = (unsigned int)((unsigned int)seg->ds.shm_perm.seq << 16) | (unsigned int)((unsigned int)shmid & 0xffff); /* 16: use the seq as the upper 16 bits */
                  }
                  break;
              case IPC_SET://重置共享段
                  ret = ShmPermCheck(seg, SHM_M);
                  //从用户空间拷贝数据到内核空间
                  ret = LOS_ArchCopyFromUser(&shm_perm, &buf->shm_perm, sizeof(struct ipc_perm));
                  seg->ds.shm_perm.uid = shm_perm.uid;
                  seg->ds.shm_perm.gid = shm_perm.gid;
                  seg->ds.shm_perm.mode = (seg->ds.shm_perm.mode & ~ACCESSPERMS) |
                                          (shm_perm.mode & ACCESSPERMS);//可访问
                  seg->ds.shm_ctime = time(NULL);
      #ifdef LOSCFG_SHELL
                  (VOID)memcpy_s(seg->ownerName, OS_PCB_NAME_LEN, OS_PCB_FROM_PID(shm_perm.uid)->processName,
                              OS_PCB_NAME_LEN);
      #endif
                  break;
              case IPC_RMID://删除共享段
                  ret = ShmPermCheck(seg, SHM_M);
                  seg->status |= SHM_SEG_REMOVE;
                  if (seg->ds.shm_nattch <= 0) {//没有任何进程在使用了
                      ShmFreeSeg(seg);//释放 归还内存
                  }
                  break;
              case IPC_INFO://把内核空间的共享页数据拷贝到用户空间
                  ret = LOS_ArchCopyToUser(buf, &g_shmInfo, sizeof(struct shminfo));
                  ret = g_shmInfo.shmmni;
                  break;
              case SHM_INFO:
                  shmInfo.shm_rss = 0;
                  shmInfo.shm_swp = 0;
                  shmInfo.shm_tot = 0;
                  shmInfo.swap_attempts = 0;
                  shmInfo.swap_successes = 0;
                  shmInfo.used_ids = ShmSegUsedCount();//在使用的seg数
                  ret = LOS_ArchCopyToUser(buf, &shmInfo, sizeof(struct shm_info));//把内核空间的共享页数据拷贝到用户空间
                  ret = g_shmInfo.shmmni;
                  break;
              default:
                  VM_ERR("the cmd(%d) is not supported!", cmd);
                  ret = EINVAL;
                  goto ERROR;
          }
          SYSV_SHM_UNLOCK();
          return ret;
      }
  • 第四步: 完事了解绑/删除,好聚好散还有下次,在ShmDt中主要干了解除映射LOS_ArchMmuUnmap这件事,没有了映射就不再有关系了,并且会检测到最后一个解除映射的进程时,会彻底释放掉这段共享内存ShmFreeSeg
    /**
      * @brief 当对共享存储的操作已经结束时,则调用shmdt与该存储段分离
          如果shmat成功执行,那么内核将使与该共享存储相关的shmid_ds结构中的shm_nattch计数器值减1
      * @attention 注意:这并不从系统中删除共享存储的标识符以及其相关的数据结构。共享存储的仍然存在,
          直至某个进程带IPC_RMID命令的调用shmctl特地删除共享存储为止
      * @param shmaddr 
      * @return INT32 
      */
      INT32 ShmDt(const VOID *shmaddr)
      {
          LosVmSpace *space = OsCurrProcessGet()->vmSpace;//获取进程空间
          (VOID)LOS_MuxAcquire(&space->regionMux);
          region = LOS_RegionFind(space, (VADDR_T)(UINTPTR)shmaddr);//找到线性区
          shmid = region->shmid;//线性区共享ID
          LOS_RbDelNode(&space->regionRbTree, &region->rbNode);//从红黑树和链表中摘除节点
          LOS_ArchMmuUnmap(&space->archMmu, region->range.base, region->range.size >> PAGE_SHIFT);//解除线性区的映射
          (VOID)LOS_MuxRelease(&space->regionMux);
          /* free it */
          free(region);//释放线性区所占内存池中的内存
          SYSV_SHM_LOCK();
          seg = ShmFindSeg(shmid);//找到seg,线性区和共享段的关系是 1:N 的关系,其他空间的线性区也会绑在共享段上
          ShmPagesRefDec(seg);//页面引用数 --
          seg->ds.shm_nattch--;//使用共享内存的进程数少了一个
          if ((seg->ds.shm_nattch <= 0) && //无任何进程使用共享内存
              (seg->status & SHM_SEG_REMOVE)) {//状态为删除时需要释放物理页内存了,否则其他进程还要继续使用共享内存
              ShmFreeSeg(seg);//释放seg 页框链表中的页框内存,再重置seg状态
          } else {
          seg->ds.shm_dtime = time(NULL);//记录分离的时间
          seg->ds.shm_lpid = LOS_GetCurrProcessID();//记录操作进程ID
          }
          SYSV_SHM_UNLOCK();

总结

看到这里你应该不会问共享内存的作用和为啥它是最快的进程间通讯方式了,如果还有这两个问题说明还要再看一遍 😛 ,另外细心的话会发现共享内存会有个小缺点,就是同时访问的问题,所以需要使用互斥锁来保证同时只有一个进程在使用,SYSV_SHM_LOCK和 SYSV_SHM_UNLOCK在以上的四个步骤中都有出现。

STATIC LosMux g_sysvShmMux; //互斥锁,共享内存本身并不保证操作的同步性,所以需用互斥锁
/* private macro */
#define SYSV_SHM_LOCK()     (VOID)LOS_MuxLock(&g_sysvShmMux, LOS_WAIT_FOREVER)	//申请永久等待锁
#define SYSV_SHM_UNLOCK()   (VOID)LOS_MuxUnlock(&g_sysvShmMux)	//释放锁

鸿蒙全栈开发全新学习指南

也为了积极培养鸿蒙生态人才,让大家都能学习到鸿蒙开发最新的技术,针对一些在职人员、0基础小白、应届生/计算机专业、鸿蒙爱好者等人群,整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线【包含了大厂APP实战项目开发】

本路线共分为四个阶段:

第一阶段:鸿蒙初中级开发必备技能

第二阶段:鸿蒙南北双向高工技能基础:gitee.com/MNxiaona/733GH

第三阶段:应用开发中高级就业技术

第四阶段:全网首发-工业级南向设备开发就业技术:gitee.com/MNxiaona/733GH

《鸿蒙 (Harmony OS)开发学习手册》(共计892页)

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

开发基础知识:gitee.com/MNxiaona/733GH

1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……

基于ArkTS 开发

1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……

鸿蒙开发面试真题(含参考答案):gitee.com/MNxiaona/733GH

鸿蒙入门教学视频:

美团APP实战开发教学:gitee.com/MNxiaona/733GH

写在最后

  • 如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙:
  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
  • 想要获取更多完整鸿蒙最新学习资源,请移步前往小编:gitee.com/MNxiaona/733GH

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1668111.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

南京信工一班IP(2)

第六章&#xff0c;BGP—边界网关协议 自治系统—AS ​ 定义&#xff1a;由一个单一的机构或组织所管理的一系列IP网络及其设备所构成的集合。 ​ AS的来源&#xff1a; 整个网络规模过大&#xff0c;会导致路由信息收敛速度过慢&#xff0c;设备对相同目标认知不同。AS之间…

python算法demo0512

最长回文数 代码 class Solution:def longestPalindrome(self, s: str) -> str:n len(s)if n < 2:return smax_len 1begin 0# dp[i][j] 表示 s[i..j] 是否是回文串dp [[False] * n for _ in range(n)]for i in range(n):dp[i][i] True# 递推开始# 先枚举子串长度fo…

iview(viewUI) span-method 表格实现将指定列的值相同的行合并单元格

效果图是上面这样的&#xff0c;将第一列的名字一样的合并在一起&#xff1b; <template><div class"table-wrap"><Table stripe :columns"columns" :data"data" :span-method"handleSpan"></Table></div&…

Oracle 数据库

前言 今天开始学习 Oracle 数据库&#xff0c;这是实习公司要求的&#xff0c;虽然还没开始实习&#xff0c;但是事先熟练到岗之后就不需要再花费时间学习了。有了 MySQL 的基础&#xff0c;学习 Oracle 应该问题不大&#xff0c;不过 MySQL 一些进阶的内容依然需要再精进一下。…

搭建属于自己的AI知识库

前言 最近在看一本书《在线》&#xff0c;将所有数据都需要在线&#xff0c;才有生命力&#xff0c;那么我们的知识库也是。我们现在就可以用先进的大预言模型搭建属于自己的在线 AI 知识库&#xff0c;他就是 ChatGLM 智谱清言智能体。 它可以将自己的知识库与 ChatGLM 结合&…

锐捷EWEB网管系统RCE漏洞

文章目录 免责声明漏洞描述漏洞原理影响版本漏洞复现修复建议 免责声明 该文章只为学习和交流&#xff0c;请不要做违法乱纪的事情&#xff0c;如有与本人无关 漏洞描述 锐捷网管系统是由北京锐捷数据时代科技有限公司开发的新一代基于云的网络管理软件&#xff0c;以"…

保研机试之【二叉树序列化】

老规矩咯&#xff1a; 参考&#xff1a;东哥带你刷二叉树&#xff08;序列化篇&#xff09; | labuladong 的算法笔记 建议先过一遍&#xff1a;今天是二叉树~-CSDN博客&#xff0c;very重要&#xff01; 然后再过一遍&#xff08;理解怎么应用方法&#xff09;&#xff1a…

通义灵码企业版正式发布,满足企业私域知识检索、数据合规、统一管理等需求

5 月 9 日阿里云 AI 峰会&#xff0c;阿里云智能集团首席技术官周靖人宣布&#xff0c;通义灵码企业版正式发布&#xff0c;满足企业用户的定制化需求&#xff0c;帮助企业提升研发效率。 通义灵码是国内用户规模第一的智能编码助手&#xff0c;基于 SOTA 水准的通义千问代码模…

力扣32. 最长有效括号

Problem: 32. 最长有效括号 文章目录 题目描述思路及解法复杂度Code 题目描述 思路及解法 1.创建一个栈&#xff0c;并将-1先添加到栈中&#xff08;添加-1到栈中只是为了方便接下来的操作&#xff09;&#xff0c;定义int变量len用于记录每一个子有效括号的长度&#xff0c;ma…

logback日志持久化

1、问题描述 使用logback持久化记录日志。 2、我的代码 logback是Springboot框架里自带的&#xff0c;所以只要引入“spring-boot-starter”就行了。无需额外引入logback依赖。 pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns&…

Python 中的 Lambda 函数:简单、快速、高效

大家好&#xff0c;今天再给大家介绍一个python的一个强大工具Lambda 函数&#xff0c;它允许你快速定义简单的匿名函数。这种函数是“匿名的”&#xff0c;因为它们不需要像常规函数那样被明确命名。 在本文中&#xff0c;我们将通过清晰的解释和实用的示例&#xff0c;深入了…

MFC窗口更新与重绘

窗口更新与重绘 窗口或控件更新其外观的情况通常包括以下几种&#xff1a; 窗口大小变化&#xff1a; 当用户调整窗口大小时&#xff0c;窗口的客户区大小会改变&#xff0c;需要重新绘制窗口内容以适应新的大小。 窗口重叠或暴露&#xff1a; 当窗口被其他窗口遮挡部分或完…

【Linux】Udp_Tcp协议

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;折纸花满衣 &#x1f3e0;个人专栏&#xff1a;Linux 目录 &#x1f449;&#x1f3fb;再谈端口号pidof命令 &#x1f449;&#x1f3fb;UDP协议报文的管理基于UDP协议的应用层协议 &#x1f449;&#x1…

如何安全高效地进行分公司文件下发?

确保分公司文件下发过程中的保密性和安全性&#xff0c;是企业信息安全管理的重要组成部分。以下是一些关键步骤和最佳实践&#xff1a; 权限管理&#xff1a;确保只有授权的人员可以访问文件。使用权限管理系统来控制谁可以查看、编辑或下载文件。 加密传输&#xff1a;在文…

【数据结构与算法】力扣 111. 二叉树的最小深度

题目描述 给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明&#xff1a; 叶子节点是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a; root [3,9,20,null,null,15,7] 输出&#xff1a; 2示例 2&#…

论文AI率:检测原理是什么?该如何降低论文AI率?

我是娜姐 迪娜学姐 &#xff0c;一个SCI医学期刊编辑&#xff0c;探索用AI工具提效论文写作和发表。 上一篇介绍了10个检测AI率的在线工具。本篇来说说AI率到底是如何检测出来的&#xff1f;该如何有效降低论文的AI率&#xff1f; 和AI大模型一样&#xff0c;AI检测的核心也是…

【数据结构与算法】递归

// 计算 1-100 累加 function add(a, b) {return a b ? a : add(a, b - 1) b }console.log(add(1, 100))// 计算阶乘 function factorial(n) {return n < 1 ? 1 : n * factorial(n - 1) }console.log(factorial(5)) // 120理论上所有递归都可以用循环实现。 注意防止栈…

电商技术揭秘营销相关系列文章合集(4)

相关系列文章 电商技术揭秘相关系列文章合集&#xff08;1&#xff09; 电商技术揭秘相关系列文章合集&#xff08;2&#xff09; 电商技术揭秘相关系列文章合集&#xff08;3&#xff09; 文章目录 引言集合说明集合文章列表 引言 在数字化浪潮的推动下&#xff0c;电商行…

数据可视化第五天(读取文件获得男生女生身高信息,并且可视化在一个图像)

文件 需要学生文件的可以私信我 过程 利用numpy的loadtxt文件读取学号&#xff0c;性别&#xff0c;和身高。 import numpy as np import matplotlib.pyplot as pltfilename/Users/oommnn/Desktop/python学习/数据分析/网课资料/第04天/student-data.txtuser_infonp.dtype(…

哈希表Hash table

哈希表是根据关键码的值而直接进行访问的数据结构。 数组就是⼀张哈希表。 哈希表中关键码就是数组的索引下标&#xff0c;然后通过下标直接访问数组中的元素&#xff0c;如下图所示&#xff1a; 那么哈希表能解决什么问题呢&#xff0c;一般哈希表都是用来快速判断⼀个元素是…