Python---Numpy万字总结(2)

news2025/1/22 16:15:06

NumPy的应用(2)

数组对象的方法

获取描述统计信息

描述统计信息主要包括数据的集中趋势、离散程度和频数分析等,其中集中趋势主要看均值和中位数,离散程度可以看极值、方差、标准差等

array1 = np.random.randint(1, 100, 10)
array1

输出:

array([46, 51, 15, 42, 53, 71, 20, 62,  6, 94])

计算总和、均值和中位数。

代码:

print(array1.sum())
print(np.sum(array1))
print(array1.mean())
print(np.mean(array1))
print(np.median(array1))
print(np.quantile(array1, 0.5))

说明:上面代码中的meanmedianquantile分别是 NumPy 中计算算术平均值、中位数和分位数的函数,其中quantitle函数的第二个参数设置为0.5表示计算50%分位数,也就是中位数。

输出:

460
460
46.0
46.0
48.5
48.5

极值、全距和四分位距离。

代码:

print(array1.max())
print(np.amax(array1))
print(array1.min())
print(np.amin(array1))
print(array1.ptp())
print(np.ptp(array1))
q1, q3 = np.quantile(array1, [0.25, 0.75])
print(q3 - q1)

输出:

94
94
6
6
88
88
34.25

方差、标准差和变异系数。

代码:

print(array1.var())
print(np.var(array1))
print(array1.std())
print(np.std(array1))
print(array1.std() / array1.mean())

输出:

651.2
651.2
25.51862065237853
25.51862065237853
0.5547526228777941

绘制箱线图。

箱线图又称为盒须图,是显示一组数据分散情况的统计图,因形状如箱子而得名。 它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较。

代码:

plt.boxplot(array1, showmeans=True)
plt.ylim([-20, 120])
plt.show()

输出:

在这里插入图片描述

值得注意的是,对于二维或更高维的数组,在获取描述统计信息时,可以通过名为axis的参数指定均值、方差等运算是沿着哪一个轴来执行,axis参数不同,执行的结果可能是大相径庭的,如下所示。

代码:

array2 = np.random.randint(60, 101, (5, 3))
array2

输出:

array([[72, 64, 73],
       [61, 73, 61],
       [76, 85, 77],
       [97, 88, 90],
       [63, 93, 82]])

代码:

array2.mean()

输出:

77.0

代码:

array2.mean(axis=0)

输出:

array([73.8, 80.6, 76.6])

代码:

array2.mean(axis=1)

输出:

array([69.66666667, 65.        , 79.33333333, 91.66666667, 79.33333333])

代码:

array2.max(axis=0)

输出:

array([97, 93, 90])

代码:

array2.max(axis=1)

输出:

array([73, 73, 85, 97, 93])

再看看绘制箱线图,对于二维数组每一列都会产生一个统计图形,如下所示。

代码:

plt.boxplot(array2, showmeans=True)
plt.ylim([-20, 120])
plt.show()

输出:

需要说明的是,NumPy 的数组对象并没有提供计算几何平均值、调和平均值、去尾平均值等的方法,如果有这方面的需求,可以使用名为 scipy 的三方库,它的stats模块中提供了这些函数。此外,该模块还提供了计算众数、变异系数、偏态、峰度的函数,代码如下所示。

代码:

from scipy import stats

print(np.mean(array1))                # 算术平均值
print(stats.gmean(array1))            # 几何平均值
print(stats.hmean(array1))            # 调和平均值
print(stats.tmean(array1, [10, 90]))  # 去尾平均值
print(stats.variation(array1))        # 变异系数
print(stats.skew(array1))             # 偏态系数
print(stats.kurtosis(array1))         # 峰度系数

输出:

46.0
36.22349548825599
24.497219530825497
45.0
0.5547526228777941
0.11644192634527782
-0.7106251396024126
其他相关方法概述
  1. all() / any()方法:判断数组是否所有元素都是True / 判断数组是否有为True的元素。

  2. astype()方法:拷贝数组,并将数组中的元素转换为指定的类型。

  3. reshape()方法:调整数组对象的形状。

  4. dump()方法:保存数组到二进制文件中,可以通过 NumPy 中的load()函数从保存的文件中加载数据创建数组。

    代码:

    array.dump('array1-data')
    array3 = np.load('array1-data', allow_pickle=True)
    array3
    

    输出:

    array([46, 51, 15, 42, 53, 71, 20, 62,  6, 94])
    
  5. tofile()方法:将数组对象写入文件中。

    array1.tofile('res/array.txt', sep=',')
    
  6. fill()方法:向数组中填充指定的元素。

  7. flatten()方法:将多维数组扁平化为一维数组。

    代码:

    array2.flatten()
    

    输出:

    array([1, 2, 3, 4, 5, 6, 7, 8, 9])
    
  8. nonzero()方法:返回非0元素的索引。

  9. round()方法:对数组中的元素做四舍五入操作。

  10. sort()方法:对数组进行就地排序。

    代码:

    array1.sort()
    array1
    

    输出:

    array([ 6, 15, 20, 42, 46, 51, 53, 62, 71, 94])
    
  11. swapaxes()transpose()方法:交换数组指定的轴和转置。

    代码:

    array2.swapaxes(0, 1)
    

    输出:

    array([[1, 4, 7],
           [2, 5, 8],
           [3, 6, 9]])
    

    代码:

    array2.transpose()
    

    输出:

    array([[1, 4, 7],
           [2, 5, 8],
           [3, 6, 9]])
    
  12. tolist()方法:将数组转成 Python 中的list

    代码:

    print(array2.tolist())
    print(type(array2.tolist()))
    

    输出:

    [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    <class 'list'>
    

数组的运算

使用 NumPy 最为方便的是当需要对数组元素进行运算时,不用编写循环代码遍历每个元素,所有的运算都会自动的矢量化。简单的说就是,NumPy 中的数学运算和数学函数会自动作用于数组中的每个成员。

数组跟标量的运算

NumPy 的数组可以跟一个数值进行加、减、乘、除、求模、求幂等运算,对应的运算会作用到数组的每一个元素上,如下所示。

代码:

array1 = np.arange(1, 10)
print(array1 + 10)
print(array1 * 10)

输出:

[11 12 13 14 15 16 17 18 19]
[10 20 30 40 50 60 70 80 90]

除了上述的运算,关系运算也是没有问题的,之前讲布尔索引的时候已经遇到过了。

代码:

print(array1 > 5)
print(array1 % 2 == 0)

输出:

[False False False False False  True  True  True  True]
[False  True False  True False  True False  True False]
数组跟数组的运算

NumPy 的数组跟数组也可以执行算术运算和关系运算,运算会作用于两个数组对应的元素上,这就要求两个数组的形状(shape属性)要相同,如下所示。

代码:

array2 = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3])
print(array1 + array2)
print(array1 * array2)
print(array1 ** array2)

输出:

[ 2  3  4  6  7  8 10 11 12]
[ 1  2  3  8 10 12 21 24 27]
[  1   2   3  16  25  36 343 512 729]

代码:

print(array1 > array2)
print(array1 % array2 == 0)

输出:

[False  True  True  True  True  True  True  True  True]
[ True  True  True  True False  True False False  True]
一元函数

NumPy 中通用一元函数的参数是一个数组对象,函数会对数组进行元素级的处理,例如:sqrt函数会对数组中的每个元素计算平方根,而log2函数会对数组中的每个元素计算以2为底的对数,代码如下所示。

代码:

print(np.sqrt(array1))
print(np.log2(array1))

输出:

[1.         1.41421356 1.73205081 2.         2.23606798 2.44948974
 2.64575131 2.82842712 3.        ]
[0.         1.         1.5849625  2.         2.32192809 2.5849625
 2.80735492 3.         3.169925  ]

表1:一元函数

函数说明
abs / fabs求绝对值的函数
sqrt求平方根的函数,相当于array ** 0.5
square求平方的函数,相当于array ** 2
exp计算 e x e^x ex的函数
log / log10 / log2对数函数(e为底 / 10为底 / 2为底)
sign符号函数(1 - 正数;0 - 零;-1 - 负数)
ceil / floor上取整 / 下取整
isnan返回布尔数组,NaN对应True,非NaN对应False
isfinite / isinf判断数值是否为无穷大的函数
cos / cosh / sin三角函数
sinh / tan / tanh三角函数
arccos / arccosh / arcsin反三角函数
arcsinh / arctan / arctanh反三角函数
rint / round四舍五入函数
二元函数

NumPy 中通用二元函数的参数是两个数组对象,函数会对两个数组中的对应元素进行运算,例如:maximum函数会对两个数组中对应的元素找最大值,而power函数会对两个数组中对应的元素进行求幂操作,代码如下所示。

代码:

array3 = np.array([[4, 5, 6], [7, 8, 9]])
array4 = np.array([[1, 2, 3], [3, 2, 1]])
print(np.maximum(array3, array4))
print(np.power(array3, array4))

输出:

[[4 5 6]
 [7 8 9]]
[[  4  25 216]
 [343  64   9]]

表2:二元函数

函数说明
add(x, y) / substract(x, y)加法函数 / 减法函数
multiply(x, y) / divide(x, y)乘法函数 / 除法函数
floor_divide(x, y) / mod(x, y)整除函数 / 求模函数
allclose(x, y)检查数组xy元素是否几乎相等
power(x, y)数组 x x x的元素 x i x_i xi和数组 y y y的元素 y i y_i yi,计算 x i y i x_i^{y_i} xiyi
maximum(x, y) / fmax(x, y)两两比较元素获取最大值 / 获取最大值(忽略NaN)
minimum(x, y) / fmin(x, y)两两比较元素获取最小值 / 获取最小值(忽略NaN)
dot(x, y)点积运算(数量积,通常记为 ⋅ \cdot ,用于欧几里得空间(Euclidean space))
inner(x, y)内积运算(内积的含义要高于点积,点积相当于是内积在欧几里得空间 R n \mathbb{R}^n Rn的特例,而内积可以推广到赋范向量空间,只要它满足平行四边形法则即可)
cross(x, y) 叉积运算(向量积,通常记为 × \times ×,运算结果是一个向量)
outer(x, y)外积运算(张量积,通常记为 ⨂ \bigotimes ,运算结果通常是一个矩阵)
intersect1d(x, y)计算xy的交集,返回这些元素构成的有序数组
union1d(x, y)计算xy的并集,返回这些元素构成的有序数组
in1d(x, y)返回由判断x 的元素是否在y中得到的布尔值构成的数组
setdiff1d(x, y)计算xy的差集,返回这些元素构成的数组
setxor1d(x, y)计算xy的对称差,返回这些元素构成的数组

说明:关于向量和矩阵的运算,我们在下一个章节加以说明。

广播机制

上面数组运算的例子中,两个数组的形状(shape属性)是完全相同的,
注意(什么情况会触发广播机制以及广播机制的特点):
1.数组形状不同
2.数组的某一维度等长
3.其中一个数组的某一维度为1

我们再来研究一下,两个形状不同的数组是否可以直接做二元运算或使用通用二元函数进行运算,请看下面的例子。

代码:

array5 = np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2], [3, 3, 3]])
array6 = np.array([1, 2, 3])
array5 + array6

输出:

array([[1, 2, 3],
       [2, 3, 4],
       [3, 4, 5],
       [4, 5, 6]])

代码:

array7 = np.array([[1], [2], [3], [4]])
array5 + array7

输出:

array([[1, 1, 1],
       [3, 3, 3],
       [5, 5, 5],
       [7, 7, 7]])

通过上面的例子,我们发现形状不同的数组仍然有机会进行二元运算,但这不代表任意形状的数组都可以进行二元运算。简单的说,只有两个数组后缘维度相同或者后缘维度不同但其中一个数组后缘维度为1时,广播机制才会被触发。通过广播机制,NumPy 将两个原本形状不相同的数组变成形状相同,才能进行二元运算。所谓后缘维度,指的是数组形状(shape属性)从后往前看对应的部分,我们举例说明。

上图中,一个数组的形状是(4, 3),另一个数组的形状是(3, ),从后往前看对应的部分都是3,属于后缘维度相同,可以应用广播机制,第二个数组会沿着缺失元素那个轴的方向去广播自己,最终让两个数组形状达成一致。

上图中,一个数组的形状是(3, 4, 2),另一个数组的形状是(4, 2),从后往前看对应的部分都是(4, 2),属于后缘维度相同,可以应用广播机制,第二个数组会沿着缺失元素那个轴的方向去广播自己,最终让两个数组形状达成一致。

上图中,一个数组的形状是(4, 3),另一个数组的形状是(4, 1),这是后缘维度不相同的情况,但是第二个数组跟第一个数组不同的地方为1,第二个数组可以沿着为1 的那个轴广播自己,最终让两个数组形状达成一致。

思考:一个3行1列的二维数组和一个1行3列的二维数组能够执行加法运算吗?

其他常用函数

除了上面讲到的函数外,NumPy 中还提供了很多用于处理数组的函数,ndarray对象的很多方法也可以通过调用函数来实现,下表给出了一些常用的函数。

表3:NumPy其他常用函数

函数说明
unique去除数组重复元素,返回唯一元素构成的有序数组
copy返回拷贝数组得到的数组
sort返回数组元素排序后的拷贝
split / hsplit / vsplit将数组拆成若干个子数组
stack / hstack / vstack将多个数组堆叠成新数组
concatenate沿着指定的轴连接多个数组构成新数组
append / insert向数组末尾追加元素 / 在数组指定位置插入元素
argwhere找出数组中非0元素的位置
extract / select / where按照指定的条件从数组中抽取或处理数组元素
flip沿指定的轴翻转数组中的元素
fromregex通过读取文件和正则表达式解析获取数据创建数组对象
repeat / tile通过对元素的重复来创建新数组
roll沿指定轴对数组元素进行移位
resize重新调整数组的大小
place / put将数组中满足条件的元素/指定的元素替换为指定的值
partition用选定的元素对数组进行一次划分并返回划分后的数组

去重(重复元素只保留一项)

代码:

np.unique(array5)

输出:

array([0, 1, 2, 3])

堆叠和拼接

代码:

array8 = np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]])
array9 = np.array([[4, 4, 4], [5, 5, 5], [6, 6, 6]])
np.hstack((array8, array9))

输出:

array([[1, 1, 1, 4, 4, 4],
       [2, 2, 2, 5, 5, 5],
       [3, 3, 3, 6, 6, 6]])

代码:

np.vstack((array8, array9))

输出:

array([[1, 1, 1],
       [2, 2, 2],
       [3, 3, 3],
       [4, 4, 4],
       [5, 5, 5],
       [6, 6, 6]])

代码:

np.concatenate((array8, array9))

输出:

array([[1, 1, 1],
       [2, 2, 2],
       [3, 3, 3],
       [4, 4, 4],
       [5, 5, 5],
       [6, 6, 6]])

代码:

np.concatenate((array8, array9), axis=1)

输出:

array([[1, 1, 1, 4, 4, 4],
       [2, 2, 2, 5, 5, 5],
       [3, 3, 3, 6, 6, 6]])

追加和插入元素

代码:

np.append(array1, [10, 100])

输出:

array([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10, 100])

代码:

np.insert(array1, 1, [98, 99, 100])

输出:

array([  1,  98,  99, 100,   2,   3,   4,   5,   6,   7,   8,   9])

抽取和处理元素

代码:

np.extract(array1 % 2 != 0, array1)

输出:

array([1, 3, 5, 7, 9])

说明:上面extract函数的操作相当于我们之前讲的布尔索引。

代码:

np.select([array1 <= 3, array1 >= 7], [array1 * 10, array1 ** 2])

输出:

array([10, 20, 30,  0,  0,  0, 49, 64, 81])

说明:上面select函数的第一个参数设置了两个条件,满足第一个条件的元素执行了乘以10的操作,满足第二个条件的元素执行了求平方的操作,两个条件都不能满足的数组元素会被处理为0。

代码:

np.where(array1 <= 5, array1 * 10, array1 ** 2)

输出:

array([10, 20, 30, 40, 50, 36, 49, 64, 81])

重复数组元素创建新数组

代码:

np.repeat(array1, 3)

输出:

array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9])

代码:

np.tile(array1, 2)

输出:

array([1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9])

调整数组大小

代码:

np.resize(array1, (5, 3))

输出:

array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9],
       [1, 2, 3],
       [4, 5, 6]])

代码:

 np.resize(array5, (2, 4))

输出:

array([[0, 0, 0, 1],
       [1, 1, 2, 2]])

替换数组元素

代码:

np.put(array1, [0, 1, -1, 3, 5], [100, 200])
array1

输出:

array([100, 200,   3, 200,   5, 100,   7,   8, 100])

说明:上面put函的第二个参数给出了要被替换的元素的索引,但是用来作为替换值的元素只有100200,所以这两个值会被循环使用,因此索引为01-135的元素被依次替换成了100200100200100

代码:

np.place(array1, array1 > 5, [1, 2, 3])
array1

输出:

array([1, 2, 3, 3, 5, 1, 2, 3, 1])

注意put函数和place函数都没有返回新的数组对象,而是在原来的数组上直接进行替换。

还是需要多敲多练才能熟以运用哦~~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1666195.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

校园管理系统,基于 SpringBoot+Vue+MySQL 开发的前后端分离的校园管理系统设计实现

目录 一. 前言 二. 功能模块 2.1. 管理员功能模块 2.2. 用户功能模块 2.3. 院校管理员功能模块 三. 部分代码实现 四. 源码下载 一. 前言 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身…

26、Flink 的状态数据结构升级

状态数据结构升级 a&#xff09;概述 Flink 流应用通常被设计为永远或者长时间运行&#xff0c;与所有长期运行的服务一样&#xff0c;应用程序需要随着业务的迭代而进行调整&#xff0c;应用所处理的数据 schema 也会随着进行变化。 升级状态类型的数据 schema &#xff0c…

住宅ip与数据中心ip代理的区别是什么

代理通常意味着“替代”。它是用户设备和目标服务器之间的中介&#xff0c;允许在不同的IP地址下上网。代理ip根据来源分类可分住宅ip与数据中心ip&#xff0c;二者之间区别是什么呢&#xff1f; 住宅ip是由互联网服务提供商(ISP)提供给家庭的IP地址。出于这个原因&#xff0c…

社交媒体数据恢复:密聊猫

一、概述 密聊猫是一款提供多种优质体验的手机社交聊天软件。通过这款软件&#xff0c;用户可以享受到多种不同的乐趣体验&#xff0c;如真人在线匹配、真实的交友体验等。同时&#xff0c;密聊猫也提供了数据恢复功能&#xff0c;帮助用户找回丢失的数据。 二、数据恢复步骤…

【经验分享】图片自适应窗口大小css;CSS实现背景图片全屏铺满自适应的方式

目录 设置背景颜色和边距 设置背景图片 调整背景图片尺寸和位置 完整代码 使用效果如下&#xff08;展示&#xff09; 网页版图片效果展示 手机版图片效果展示 如何使用 CSS 创建网页背景效果 在网页设计中&#xff0c;背景是一个重要的视觉元素&#xff0c;它可以为网…

Android面试题之kotlin热流和channel

本文首发于公众号“AntDream”&#xff0c;欢迎微信搜索“AntDream”或扫描文章底部二维码关注&#xff0c;和我一起每天进步一点 于冷流不同&#xff0c;在垃圾回收之前&#xff0c;flow里的值都是存在内存之中&#xff0c;并且处于活跃状态 StateFlow StateFlow是一个状态容…

排序算法及实现(上)

稳定性的判断&#xff1a;如果两个相同大小的元素也进行了交换就是不稳定&#xff0c;否则稳定 1.直接插入排序&#xff1a; 当插入第 i 位置元素时&#xff0c;前面 0 到 i-1 位置的元素已经各自有序。 此时将i 再次从i-1到0位置依次进行比较。找到合适位置将其插入&#x…

Java 【数据结构】 哈希(Hash超详解)HashSetHashMap【神装】

登神长阶 第十神装 HashSet 第十一神装 HashMap 目录 &#x1f454;一.哈希 &#x1f9e5;1.概念 &#x1fa73;2.Object类的hashCode()方法: &#x1f45a;3.String类的哈希码: &#x1f460;4.注意事项: &#x1f3b7;二.哈希桶 &#x1fa97;1.哈希桶原理 &#x…

AI地名故事:沧联村

沧联村&#xff0c;位于黄埔区云埔街&#xff0c;与开发区东区、增城区接壤&#xff0c;辖区面积约6.58平方公里。这个村庄的历史悠久&#xff0c;充满了丰富的故事。 在很久以前&#xff0c;沧联村并未有现今的名称。然而&#xff0c;随着时间的流转&#xff0c;村庄逐渐形成…

美股市场恒生指数冲刺19000点关口 地产股大涨

查查配5月10日电(中新财经记者 谢艺观)5月10日,港股现强势行情,恒生指数盘中一度冲至18993.28点,距离19000点关口仅一步之遥。 美港通证券以其专业的服务和较低的管理费用在市场中受到不少关注。该平台提供了实盘交易、止盈止损、仓位控制等功能,旨在为投资者提供更为全面的投…

深度学习设计模式之单例模式

一、单例模式简介 一个类只能有一个实例&#xff0c;提供该实例的全局访问点&#xff1b; 二、单例模式实现步骤 使用一个私有构造函数、一个私有静态变量以及一个公有静态函数来实现。 私有构造函数保证了不能通过构造函数来创建对象实例&#xff0c;只能通过公有静态函数返…

验证码生成--kaptcha

验证码生成与点击重新获取验证码 如图所示&#xff0c;本文档仅展示了验证码的生成和刷新显示。 1. 概述 系统通过生成随机验证码图像和文本。 2. 代码分析 2.1. Maven依赖 <dependency><groupId>com.github.penggle</groupId><artifactId>kaptch…

VirtualBox7安装ubantu server 22.04通过NAT+Only-Host双网卡实现宿主机与虚拟机互通

目录 背景环境安装虚拟机配置网卡修改ssh端口遇到的坑参考文章 背景 时间长没用docker了&#xff0c;有些命令都快忘了&#xff0c;心血来潮想着搞个docker玩一玩&#xff0c;所以需要先搞一个虚拟机&#xff0c;因为之前CentOS用的比较多&#xff0c;所以这次想试一试ubantu。…

Java入门——继承和多态(上)

包 包是组织类的一种方式. 使用包的主要目的是保证类的唯一性. 例如, 你在代码中写了一个 Test 类. 然后你的舍友也可能写一个 Test 类. 如果出现两个同名的类, 就会冲突, 导致 代码不能编译通过. 导入包中的类 Java 中已经提供了很多现成的类供我们使用. 例如 public cla…

【C -> Cpp】由C迈向Cpp (5)

标题&#xff1a;【C -> Cpp】由C迈向Cpp&#xff08;5&#xff09; 水墨不写bug &#xff08;图片来源于网络&#xff09; 不抵制失败&#xff0c;携手失败&#xff0c;迈向成功 正文开始&#xff1a; &#xff08;一&#xff09;深入理解构造函数 在之前的讲解中&#x…

linux系统(ubuntu)调用科大讯飞SDK实现语音识别

1. 科大讯飞官网 登录注册实名制 2. 点击控制台&#xff0c;创建应用 点击左侧的语音听写&#xff0c;右边下滑选择Linux&#xff0c;点击下载 选择Linux平台&#xff0c;普通版本&#xff0c;语音听写&#xff0c;SDK下载 此时将得到一个压缩包&#xff0c;选择的功能不…

LVS的三种工作模式---(DR/TUN/NAT)

目录 一、NAT模式&#xff08;LVS-NAT&#xff09; 二、IP隧道模式&#xff08;LVS-TUN&#xff09; 三、DR模型--直接路由模式&#xff08;LVS-DR&#xff09; LVS/DR模式ARP抑制 原因&#xff1a; LVS的DR工作模式及配置&#xff1a; LVS的NAT工作模式及配置&#xff1…

邂逅Linux--常见指令,万物为文件(一)

引子&#xff1a;在之前&#xff0c;我们经常听到Linux&#xff0c;那什么是Linux呢&#xff1f;Linux是一种免费使用和自由传播的类UNIX操作系统&#xff0c;其内核由林纳斯本纳第克特托瓦兹&#xff08;Linus Benedict Torvalds&#xff09;于1991年10月5日首次发布&#xff…

命令行工具部署达梦数据库 DMDPC(BP 多副本架构)

解达梦数据库DPC集群的主要使用场景&#xff1a; DMDPC 关注和解决的是大数据、计算与存储分离、高可用、支持全部的 SQL 标准、拥有完整的事务处理能力和集群规模能够动态伸缩的业务场景&#xff1a; 大量的复杂查询操作要求优化器能够生成优良的执行计划&#xff0c;并且执…

0基础理解ECC并做题-攻防世界easy-ECC理解

基点p就是最初选定的那个点 1和2都是整数集合&#xff0c;但是1/20.5就不属于整数集合 一直加&#xff0c;一直乘&#xff0c;还能保证有限个数字&#xff1f;这是因为采用了取模的运算&#xff0c;让元素始终都在有限的范围内。 如何计算分数求模&#xff1f; 设n1/2mod23,那么…