认识卷积神经网络

news2024/11/17 23:48:24

我们现在开始了解卷积神经网络,卷积神经网络是深度学习在计算机视觉领域的突破性成果,在计算机视觉领域,往往我们输入的图像都很大,使用全连接网络的话,计算的代价较高,图像也很难保留原有的特征,导致图像处理的准确率不高。

CNN 

卷积神经网络(Convolutional Neural Networks,简称CNN)是一种特殊类型的神经网络,特别适合于处理具有网格结构的数据,如图像和视频。CNN的设计灵感来源于生物视觉系统,特别是大脑视觉皮层对视觉信息的处理方式。

关键组件:

  1. 卷积层(Convolutional Layer):这是CNN的核心,使用一组可学习的滤波器(或称卷积核)扫描输入数据,以检测特定特征,如边缘、纹理等。滤波器的移动步长(stride)和填充(padding)是可以调整的参数,以控制输出特征图的尺寸。

  2. 激活函数(Activation Function):如ReLU(Rectified Linear Unit)等,为网络引入非线性,使得模型能学习复杂的模式。

  3. 池化层(Pooling Layer):通常紧随卷积层之后,用于降低数据的空间维度,减少计算量,同时保持重要特征不变,常见的有最大池化(Max Pooling)。

  4. 全连接层(Fully Connected Layer):位于网络的较深层,所有特征被整合并用于最终的分类或回归任务。

图像 

图像是由像素点组成的,每个像素点的值范围为: [0, 255]

  • 0 表示最暗的黑色,即没有光亮。
  • 255 表示最亮的白色,即光亮度最大。

我们看到的彩色图一般都是多通道的图像, 所谓多通道可以理解为图像由多个不同的图像层叠加而成,最常见的RGB彩色图像由三个通道组成——红色、绿色、蓝色,每个通道都有自己的像素值(也是0到255的范围),三者的组合可以表示出数百万种不同的颜色。

我们通过一个简单的例子来使用Python的matplotlib库来加载并显示一张图像,进而理解像素和通道的概念。

from PIL import Image
import matplotlib.pyplot as plt

# 加载图像
image_path = 'your_image_path.jpg'  # 替换为你的图片路径
img_pil = Image.open(image_path)

# 使用matplotlib显示图像
plt.figure(figsize=(8, 8))  # 设置显示窗口大小
plt.imshow(img_pil)  # 显示图像

# 如果是RGB图像,可以分离通道查看
if img_pil.mode == 'RGB':
    r, g, b = img_pil.split()
    plt.figure(figsize=(8, 8))
    plt.imshow(r, cmap='Reds')  # 显示红色通道
    plt.figure(figsize=(8, 8))
    plt.imshow(g, cmap='Greens')  # 显示绿色通道
    plt.figure(figsize=(8, 8))
    plt.imshow(b, cmap='Blues')  # 显示蓝色通道

plt.show()  # 显示所有图像窗口

卷积层

卷积神经网络(Convolutional Neural Network)是含有卷积层的神经网络. 卷积层的作用就是用来自动学习、提取图像的特征。CNN网络主要有三部分构成:卷积层、池化层和全连接层构成,其中卷积层负责提取图像中的局部特征;池化层用来大幅降低参数量级(降维);全连接层类似人工神经网络的部分,用来输出想要的结果。

卷积核

  • 卷积核是一个小型矩阵,通常尺寸较小,如3x3或5x5,也有其他尺寸如7x7或更大。每个元素代表权重,用于与输入图像(或前一层的特征图)的对应部分相乘。
  • 卷积核的大小、深度(即通道数)必须与输入数据的深度匹配。例如,处理RGB图像时,卷积核也应有3个通道,分别对应红、绿、蓝通道。

计算步骤: 

  1. 对齐: 首先,将卷积核与输入数据的某个区域精确对齐。对齐的起始点可以是从输入数据的左上角开始。

  2. 点乘与求和: 对于卷积核覆盖的每个位置,将卷积核的每个元素与输入数据对应位置的元素进行逐元素相乘,然后将所有乘积相加得到一个标量值。这个过程称为内积或点积。

  3. 滑动与重复: 完成一次点乘求和后,卷积核按照预定的步长(stride)在输入数据上水平或垂直滑动到下一个位置,重复上述计算过程。步长决定了卷积核每次移动的距离。

  4. 边缘处理: 为了处理边缘问题,可以在输入数据的边缘周围添加一圈或几圈零值,这个过程称为填充(padding)。填充可以保持输出特征图的尺寸或者增加尺寸。

  5. 输出特征图: 经过上述操作,每个卷积核在输入数据上滑动并计算后,会生成一个新的二维矩阵,称为特征图(Feature Map),表示了输入数据在该卷积核下的响应强度分布。

PyTorch 卷积层 API 

import torch
import torch.nn as nn
import matplotlib.pyplot as plt


# 显示图像
def show(img):

    # 输入形状: (Height, Width, Channel)
    plt.imshow(img)
    plt.axis('off')
    plt.show()


# 1. 单个多通道卷积核
def test01():

    # 读取图像, 形状: (640, 640, 4)
    img = plt.imread('data/彩色图片.png')
    show(img)

    # 构建卷积层
    # 由于 out_channels 为 1, 相当于只有一个4通道卷积核
    conv = nn.Conv2d(in_channels=4, out_channels=1, kernel_size=3, stride=1, padding=1)

    # 输入形状: (BatchSize, Channel, Height, Width)
    # mg形状: torch.Size([4, 640, 640])
    img = torch.tensor(img).permute(2, 0, 1)

    # img 形状: torch.Size([1, 4, 640, 640])
    img = img.unsqueeze(0)

    # 输入卷积层, new_img 形状: torch.Size([1, 1, 640, 640])
    new_img = conv(img)

    # new_img 形状: torch.Size([640, 640, 1])
    new_img = new_img.squeeze(0).permute(1, 2, 0)

    show(new_img.detach().numpy())


# 2. 多个多通道卷积核
def test02():

    # 读取图像, 形状: (640, 640, 4)
    img = plt.imread('data/彩色图片.png')
    show(img)

    # 构建卷积层
    # 由于 out_channels 为 3, 相当于只有 3 个4通道卷积核
    conv = nn.Conv2d(in_channels=4, out_channels=3, kernel_size=3, stride=1, padding=1)

    # 输入形状: (BatchSize, Channel, Height, Width)
    # img形状: torch.Size([3, 640, 640])
    img = torch.tensor(img).permute(2, 0, 1)

    # img 形状: torch.Size([1, 3, 640, 640])
    img = img.unsqueeze(0)

    # 输入卷积层, new_img 形状: torch.Size([1, 3, 640, 640])
    new_img = conv(img)

    # new_img 形状: torch.Size([640, 640, 3])
    new_img = new_img.squeeze(0).permute(1, 2, 0)

    # 打印三个特征图
    show(new_img[:, :, 0].unsqueeze(2).detach().numpy())
    show(new_img[:, :, 1].unsqueeze(2).detach().numpy())
    show(new_img[:, :, 2].unsqueeze(2).detach().numpy())

池化层

池化层(Pooling Layer)在卷积神经网络(CNN)中紧随卷积层之后,其主要目的是降低特征图的空间维度,减少计算量,同时保持或提炼重要的特征信息。

最常见的池化类型有两种:

  • 最大池化(Max Pooling):在池化窗口内取最大值作为输出。
  • 平均池化(Average Pooling):在池化窗口内取所有值的平均值作为输出。

计算过程

  1. 初始化: 确定池化窗口大小、步幅和输入特征图尺寸。
  2. 窗口滑动: 从输入特征图的左上角开始,窗口按照步幅S逐行逐列地滑动。
  3. 计算输出: 对于窗口覆盖的每个区域:
    • 如果是最大池化,选择窗口内最大的元素作为输出值。
    • 如果是平均池化,计算窗口内所有元素的平均值作为输出值。
  4. 构建输出特征图: 将每个窗口计算出的输出值按照窗口滑动的位置放置在输出特征图上,最终形成一个维度减小的特征图。

边缘处理

与卷积层类似,池化层也可以通过添加边界填充(padding)来处理边缘,但实践中通常较少使用,因为池化的目的是降维而非保持尺寸不变。

PyTorch 池化 API 使用

在PyTorch中,使用池化层主要通过torch.nn模块中的类来实现,比如nn.MaxPool2d用于最大池化,nn.AvgPool2d用于平均池化,以及nn.AdaptiveMaxPool2dnn.AdaptiveAvgPool2d用于自适应池化。

最大池化 (Max Pooling)

import torch
import torch.nn as nn

# 创建一个最大池化层实例
max_pool = nn.MaxPool2d(kernel_size=2, stride=2)  # 核大小为2x2,步长也为2

# 假设我们有一个张量作为输入,形状为(batch_size, channels, height, width)
input_tensor = torch.randn(1, 3, 32, 32)  # 例如,一个批次、3个通道、32x32大小的图像

# 通过池化层传递输入张量
output_tensor = max_pool(input_tensor)

print("Output shape:", output_tensor.shape)  # 输出张量的形状会根据池化核大小和步长变化

平均池化 (Average Pooling)

avg_pool = nn.AvgPool2d(kernel_size=2, stride=2)  # 同样的核大小和步长设置

output_tensor_avg = avg_pool(input_tensor)
print("Average Pool Output shape:", output_tensor_avg.shape)

自适应池化 (Adaptive Pooling)

adaptive_max_pool = nn.AdaptiveMaxPool2d(output_size=(8, 8))  # 输出尺寸为8x8

output_adaptive_max = adaptive_max_pool(input_tensor)
print("Adaptive Max Pool Output shape:", output_adaptive_max.shape)

adaptive_avg_pool = nn.AdaptiveAvgPool2d(output_size=(8, 8))

output_adaptive_avg = adaptive_avg_pool(input_tensor)
print("Adaptive Avg Pool Output shape:", output_adaptive_avg.shape)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1658005.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

浅谈项目管理的计划与实施

一、摘要   这是我们的项目计划与跟踪的内容,在项目实施中使用得很好,我拿出来与大家分享,希望大家多提意见,谢谢!最初的项目计划不够精确和准确,不能直接拿来指导我们的日常工作,也不易跟踪。…

Navicat连接远程数据库时,隔一段时间不操作出现的卡顿问题

使用 Navicat 连接服务器上的数据库时,如果隔一段时间没有使用,再次点击就会出现卡顿的问题。 如:隔一段时间再查询完数据会出现: 2013 - Lost connection to MySQL server at waiting for initial communication packet, syste…

Java文件与IO操作

1. 文件与IO操作 1.1 文件 什么是文件: 文件,对我们并不陌生,文件是保存数据的地方,比如大家经常使用的word文档,txt文件.excel文件...都是文件。它既可以保存一张图片,也可以保持视频,声音.… 1.1.1 文件流: 1.1.2 常用的文件操作: 创建文件对象相关构造器和方法: 案例&a…

Python运维之多线程!!

一、多线程 二、多线程编程之threading模块 2.1、使用threading进行多线程操作有两种方法: 三、多线程同步之Lock(互斥锁) 四、多线程同步之Semaphore(信号量) 五、多线程同步之Condition 六、多线程同步之Event…

【数据结构-二叉搜索树的增删查改】

🌈个人主页:努力学编程’ ⛅个人推荐:基于java提供的ArrayList实现的扑克牌游戏 |C贪吃蛇详解 ⚡学好数据结构,刷题刻不容缓:点击一起刷题 🌙心灵鸡汤:总有人要赢,为什么不能是我呢 …

IPFoxy Tips:什么是静态住宅IP?静态ISP代理指南

静态住宅代理(也称为静态ISP代理)是最流行的代理类型之一。它们也是隐藏您的身份并保持在线匿名的最佳方法之一。您为什么要使用住宅代理而不是仅使用常规代理服务?下面我具体分享。 一、什么是静态住宅代理? 首先,我…

网络编程基础回顾

计算机网络(5):运输层 OSI 模型与 TCP/IP 协议 OSI七层协议模型 (open system interconnection) 应用层:为应用数据提供服务表示层:数据格式转化,数据加密会话层:建立、维护和管理会话传输层&…

学习100个Unity Shader (17) --- 深度纹理

文章目录 效果shader部分C# 部分理解参考 效果 shader部分 Shader "Example/DepthTexture" {SubShader{Pass{CGPROGRAM#pragma vertex vert#pragma fragment frag#include "UnityCG.cginc"sampler2D _CameraDepthTexture;struct a2v{float4 pos : POSITIO…

Web3 ETF软件开发

开发Web3 ETF软件涉及到金融、法律和技术等多个领域的专业知识,因此存在以下技术难点,开发Web3 ETF软件是一项复杂的技术挑战,需要综合考虑各种因素。开发人员需要具备较强的技术能力和跨学科知识才能成功开发Web3 ETF软件。北京木奇移动技术…

汽车电子零部件(13):BMS电池管理系统

前言: 电池管理系统(BMS)确保电动汽车(EV)的能量分配安全高效。目前流行电动汽车中使用的有四种主要BMS架构,BMS与充电基础设施互为集成关系。BMS主要管理 的是电池组,电池组由很多电芯组成,比如下图是H/EV电池组的主要部件,显示了电池、连接、控制电路和包装的总体布…

python中w、r表示什么意思

文件读写就是一种常见的IO操作。 文件读写操作步骤 不同的编程语言读写文件的操作步骤大体都是一样的,都分为以下几个步骤: 1)打开文件,获取文件描述符; 2)操作文件描述符--读/写; 3&#…

苍穹外卖Day06笔记

疯玩了一个月,效率好低,今天开始捡起来苍穹外卖~ 1. 为什么不需要单独引入HttpClient的dependency? 因为我们在sky-common的pom.xml中已经引入了aliyun-sdk-oss的依赖,而这个依赖低层就引入了httpclinet的依赖,根据依…

最详尽的网络安全学习路线!涵盖所有技能点,带你成为网安专家!

目录 零基础小白,到就业!入门到入土的网安学习路线! 建议的学习顺序: 一、夯实一下基础,梳理和复习 二、HTML与JAVASCRIPT(了解一下语法即可,要求不高) 三、PHP入门 四、MYSQL…

ssm115乐购游戏商城系统+vue

毕业生学历证明系统 设计与实现 内容摘要 如今社会上各行各业,都喜欢用自己行业的专属软件工作,互联网发展到这个时候,人们已经发现离不开了互联网。新技术的产生,往往能解决一些老技术的弊端问题。因为传统毕业生学历信息管理难…

小巧简单实用的Linux端口转发工具Rinetd

Linux下实现端口转发有很多种方法,尤其是在可以联网的情况下,更是容易。最近在资源受限的定制系统中,找到一个方便离线安装和使用的端口转发工具Rinetd,安装包仅几十K,而且有很多版本的Linux发行系统的支持。 1、安装…

安科瑞AMC16-DETT 基站直流电能计量模块

AMC16-DETT 基站直流电能计量模块主要是针对有共享需求,且开关电源无分用户电量计量功能的基站而设计的。仪表可对六个回路的直流电能进行计量,并可为配套的霍尔传感器提供工作电流,同时可通过上位机软件实现零漂校准,具有遥测、遥…

RK3568 学习笔记 : u-boot 千兆网络无法 ping 通PC问题的解决方法二

参考 RK3568 学习笔记 : u-boot 千兆网络无法 ping 通PC问题的解决 前言 rk3568 rockchip 提供的 u-boot,默认的设备树需要读取 单独分区 resouce.img 镜像中的 设备树文件,也就是 Linux 内核的设备树 dtb 文件,gmac 网络才能正常的 ping 通…

Applied Spatial Statistics(四)点模式分析-KDE 分析和距离函数

Applied Spatial Statistics(四)点模式分析-KDE 分析和距离函数 ---- 1853年伦敦霍乱爆发 在此示例中,我将演示如何使用 John Snow 博士的经典霍乱地图在 Python 中执行 KDE 分析和距离函数。 感谢 Robin Wilson 将所有数据数字化并将其转…

mysql查询表信息(表名、表结构、字段信息等)

MySQL中,您可以使用以下SQL查询数据库的表信息或者某个表中具体的信息,例如:字段、字段描述、索引等,以下为具体的SQL: 1、查询数据库所有表信息(表名/表描述) SELECTtable_name name,TABLE_C…

第03章 二进制、八进制、十进制、十六进制之间转换

3.1 二进制及十进制的由来 3.2 二进制、十进制、八进制、十六进制的表示方法 3.3 二进制和十进制之间的相互转换 3.4 二进制和八进制之间的转换 3.5 二进制和十六进制之间的转换 3.6 二进制算术运算和逻辑运算