如何使用Transformer-TTS语音合成模型

news2024/11/19 4:22:28

1、技术原理及架构图

     Transformer-TTS主要通过将Transformer模型与Tacotron2系统结合来实现文本到语音的转换。在这种结构中,原始的Transformer模型在输入阶段和输出阶段进行了适当的修改,以更好地处理语音数据。具体来说,Transformer-TTS利用自注意力机制来处理序列数据,这使得模型能够并行处理输入序列,从而提高训练效率。此外,Transformer-TTS还采用了自回归误差方法来优化模型性能。

2、在中文语音合成中的应用效果

  • 语音自然度:Transformer-TTS由于其自注意力机制,能够较好地捕捉文本中长距离的依赖关系,这对于生成自然流畅的语音非常重要。它能够在不同的上下文中合理地预测语音特征,从而生成听起来更自然的语音。
  • 合成速度:Transformer-TTS可以并行处理数据,这使得它在语音合成速度上具有优势。相比于传统的基于RNN的TTS系统,它能够更快速地完成语音合成任务。
  • 模型泛化能力:Transformer-TTS模型通常具有良好的泛化能力,能够适应不同的语音和文本数据。这意味着它不仅可以处理标准的普通话语音合成,还可以推广到不同的方言或者具有特定语音特征的说话人。
  • 适应性:Transformer-TTS模型可以通过微调适应特定的说话风格或者语音特性,例如通过使用少量目标说话人的语音数据进行微调,以模仿特定说话人的声音。

2.1 使用WaveGlow作为声码器的模型

WaveGlow是一个基于流的声码器模型,用于将声学特征(如梅尔频谱图)转换为可听的语音波形。WaveGlow模型由NVIDIA研究小组开发,它结合了Glow和WaveNet的技术,提供了一种快速、高效且高质量的音频合成方法,且不需要自回归过程。

  • 快速合成:WaveGlow能够生成高采样率的音频,速度远超实时,这使得它非常适合实时应用。
  • 高音质:在众包平均意见得分(MOS)测试中,WaveGlow提供的音频质量与公开的最佳WaveNet实现相当。
  • 简单实现:与需要两个网络(教师网络和学生网络)的方法相比,WaveGlow只需要一个网络和一个损失函数,简化了训练过程。
  • 可逆网络结构:WaveGlow使用可逆的1x1卷积结构,这使得它能够高效地生成语音,并且保持了结构的简单性。
  • 基于流的模型:WaveGlow是一个基于流的生成模型,它通过从简单的分布(如高斯分布)采样并逐步转换为复杂的输出分布来生成语音。

2.2 mandarin-tts

Mandarin-TTS是一个专注于中文普通话语音合成的开源项目,基于Tacotron 2和WaveGlow模型构建,由Ranch Lai创建并维护。该项目旨在提供高质量、自然流畅的中文语音合成服务,适用于多种应用场景,如智能助手、有声读物、语音导航等。

下载地址:https://gitcode.com/ranchlai/mandarin-tts

2.3 主要挑战

在中文语音合成中,Transformer-TTS面临的主要挑战包括训练和推理效率低,以及难以利用现有的递归神经网络(RNNs)。此外,尽管Transformer-TTS在一定程度上解决了Tacotron2中的问题,但仍存在一些问题,如训练时的效率问题。

下面几种解决方案有助于优化上述挑战:

  • 并行处理:使用Transformer可以实现并行提供解码器输入序列的帧,这样可以通过取代循环连接来进行并行训练,从而提高训练和推理的效率。
  • 优化技术:例如,可以使用Optimum和Accelerate这两个生态系统库来优化模型,这些库提供了多种优化技巧,可以帮助提高模型的性能和效率。
  • 鲁棒性增强:通过对Transformer-TTS模型进行修改,可以获得更加鲁棒的系统。实验结果显示,在合成语音质量相等的情况下,系统变得更加稳定和可靠。

2.3.1 Optimum是一个深度学习模型优化库,它旨在帮助研究人员和开发人员提高深度学习模型的效率和性能。提供了一系列工具和接口,以便于集成到现有的深度学习工作流中。

2.3.2 Accelerate是一个由Hugging Face提供的开源库,它旨在简化在不同深度学习框架(如PyTorch和TensorFlow)中实现模型训练和优化的过程。Accelerate的主要目标是提供一个统一的API,使得开发者能够轻松地在不同框架之间迁移和测试代码。

3、Transformer-TTS的优化

  • 鲁棒性优化:通过构建概率性场景来防止离散不确定性集合内的对抗性扰动,这种方法可以提高模型的鲁棒性,使其在不同的输入条件下都能保持较好的性能。
  • 数据驱动的优化:利用大量的数据进行训练,可以帮助模型更好地理解和生成语音,从而提高转换的准确性和自然度。
  • 多头注意力机制:在Transformer TTS中,引入多头注意力机制替代了传统的RNN结构和单一的注意力网络。
  • 保存和重用注意力矩阵:在处理快速语音合成时,生成的梅尔谱程序和注意力矩阵应该被保存并在后续处理中重用。这样可以减少计算资源的消耗,并加快处理速度。
  • 优化模型配置:通过设置合适的参数,如teacher_path,并在指定目录中准备对齐项和目标,可以进一步优化模型的训练过程和结果。
  1. 4、Transformer-TTS部分代码

class TransformerTTS(nn.Module):

    """ TTS model based on Transformer """

    def __init__(self, num_mel=80, embedding_size=512):

        super(TransformerTTS, self).__init__()

        self.encoder = Encoder()

        self.decoder = Decoder()

        self.postnet = PostNet()

        self.stop_linear = Linear(embedding_size, 1, w_init='sigmoid')

        self.mel_linear = Linear(embedding_size, num_mel)

    def forward(self, src_seq, src_pos, tgt_seq, tgt_pos, mel_tgt, return_attns=False):

        encoder_output = self.encoder(src_seq, src_pos)

        decoder_output = self.decoder(

            tgt_seq, tgt_pos, src_seq, encoder_output[0], mel_tgt)

        decoder_output = decoder_output[0]

        mel_output = self.mel_linear(decoder_output)

        mel_output_postnet = self.postnet(mel_output) + mel_output

        stop_token = self.stop_linear(decoder_output)

        stop_token = stop_token.squeeze(2)

        return mel_output, mel_output_postnet, stop_token

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1657553.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

NSSCTF Web方向的例题和相关知识点(一)

[SWPUCTF 2021 新生赛]jicao 解题: 打开环境,是一段php代码 包含了flag.php文件,设定了一个POST请求的id和GET请求的json 语句会对GET请求的数据进行json解码 如果id和json变量的值都等于设定字符串,则得到 flag 我们可以使用…

如何让加快OpenHarmony编译速度?

OpenHarmony 有两种编译方式,一种是通过 hb 工具编译,一种是通过 build.sh 脚本编译。本文笔者将提升 build.sh 方式编译速度的方法整理如下: 因为笔者只用 build.sh 脚本编译,没用过 hb 工具,好像下面的选项也可以用于…

Python中使用tkinter模块和类结构的结合使用举例——编写制作一个简单的加数GUI界面

Python中使用tkinter模块和类结构的结合使用举例——编写制作一个简单的加数GUI界面 这里写目录标题 Python中使用tkinter模块和类结构的结合使用举例——编写制作一个简单的加数GUI界面一、tkinter模块和类的简述1.1 tkinter的简要介绍1.2 类结构的简要介绍 二、基于类机构和t…

拼多多强付费二阶段断流怎么办?分几种情况解决

关于断流的问题应该有不少人遇到过,即使是强付费,也不是一直有流量,到了二阶段说断流就断流,同样不能幸免。那么强付费二阶段直接断流是什么原因呢?今天跟大家讲一下强付费断流可能遇到的几种情况,要怎么应对。 第一…

利用自动获客软件实现高效精准获客

在数字化时代的浪潮中,企业之间的竞争愈发激烈。客户资源的获取成为企业生存和发展的关键。传统的获客方式如广告投放、线下推广等不仅成本高昂,而且效率和准确性难以保证。随着科技的进步,自动获客软件应运而生,它以其独特的优势…

C语言洛谷题目分享(11)回文质数

目录 1.前言 2.题目:回文质数 1.题目描述 2.输入格式 3.输出格式 4.输入输出样例 5.题解 3.小结 1.前言 哈喽大家好,今儿继续为大家分享一道蛮有价值的一道题,希望大家多多支持喔~ 2.题目:回文质数 1.题目描述 因为 151 …

【MySQL数据库】详解数据库审核工具SQLE的部署及接口调用

SQLE部署及使用 1. 部署SQLE SQLE相信大家都不陌生吧,它是一款开源,支持多场景审核,支持标准化上线流程,原生支持 MySQL 审核且数据库类型可扩展的 SQL审核工具。我们可以基于此工具进行数据库SQL审核,提升SQL脚本质量…

ue引擎游戏开发笔记(36)——为射击落点添加特效

1.需求分析: 在debug测试中能看到子弹落点后,需要给子弹添加击中特效,更真实也更具反馈感。 2.操作实现: 1.思路:很简单,类似开枪特效一样,只要在头文件声明特效变量,在fire函数中…

数据挖掘(一)数据类型与统计

前言 打算新开一个笔记系列,基于国防科技大学 丁兆云老师的《数据挖掘》 数据挖掘 1、数据类型与统计 数据统计 最大值,最小值,平均值,中位数,位数,方差等统计指标 df.describe() #当调用df.describe(…

分布式锁与秒杀

分布式锁与秒杀 1. 分布式锁1.1 常用Redis分布式锁方案三:使用Lua脚本(包含SETNX EXPIRE两条指令) 秒杀 1. 分布式锁 https://www.cnblogs.com/shoshana-kong/p/17519673.html 1.1 常用Redis分布式锁方案三:使用Lua脚本(包含SETNX EXPIRE两条指令) …

【JAVA基础之装箱和拆箱】自动装箱和自动拆箱

🔥作者主页:小林同学的学习笔录 🔥mysql专栏:小林同学的专栏 目录 1.包装类 1.1 概述 1.2 Integer类 1.3 装箱和拆箱 1.4 自动装箱和自动拆箱 1.5 基本类型与字符串之间的转换 1.5.1 基本类型转换为字符串 1.5.2 字符串转…

力扣每日一题111:二叉树的最小深度

题目 简单 给定一个二叉树,找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明:叶子节点是指没有子节点的节点。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:2示例 2&#x…

银行职员向媒体投稿发文章我找到了好方法

作为一名基层银行的媒体联络专员,我的日常工作中有一项至关重要的任务,那就是代表我所在的支行向各大媒体投稿,传播我们的金融服务、产品动态以及社会责任实践。起初,这项看似简单的工作却成了我职业生涯中的一大挑战。传统的邮件投稿方式,不仅耗时费力,而且审核流程严格,稿件从…

python 和 MATLAB 都能绘制的母亲节花束!!

hey 母亲节快到了,教大家用python和MATLAB两种语言绘制花束~这段代码是我七夕节发的,我对代码进行了简化,同时自己整了个python版本 MATLAB 版本代码 function roseBouquet_M() % author : slandarer% 生成花朵数据 [xr,tr]meshgrid((0:24).…

杨辉三角的打印

题目内容: 在屏幕上打印杨辉三角。 思路: 首先我们通过观察发现,每一步的打印都与行列数有关,中间的数据由这一列和上一行的前一列数据控制。所以我们可以使用二维数组进行操作: (1&#xff…

在k8s中部署hadoop后的使用,包括服务端及客户端(客户端的安装及与k8s服务的对接)

(作者:陈玓玏) 在https://blog.csdn.net/weixin_39750084/article/details/136744772?spm1001.2014.3001.5502和https://blog.csdn.net/weixin_39750084/article/details/136750613?spm1001.2014.3001.5502这两篇文章中,说明…

Redis + OpenResty 多级缓存

多级缓存 初识 OpenResty OpenResty - 开源官方站 基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。 具备Nginx的完整功能基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块允…

AlibabaCloud微服务下的链路追踪系统实战详解

🚀 作者 :“二当家-小D” 🚀 博主简介:⭐前荔枝FM架构师、阿里资深工程师||曾任职于阿里巴巴担任多个项目负责人,8年开发架构经验,精通java,擅长分布式高并发架构,自动化压力测试,微服务容器化k…

【深耕 Python】Quantum Computing 量子计算机(3)重要数学公式一览

写在前面 往期量子计算机博客: 【深耕 Python】Quantum Computing 量子计算机(1)图像绘制基础 【深耕 Python】Quantum Computing 量子计算机(2)绘制电子运动平面波 正文 偏微分: 交换关系&#xff…

MATLAB 三维空间中在两点之间等间隔插入多个点 (67)

MATLAB 三维空间中在两点之间等间隔插入多个点 (67) 一、算法介绍二、算法实现1.代码2.结果一、算法介绍 用于加密直线点云,具体为根据给定的直线端点,沿着该直线方向,插入多个点,从而加密。具体方法和效果如下所示: 二、算法实现 1.代码 代码如下(示例): % 定…