大数据基础工程技术团队4篇论文入选ICLR,ICDE,WWW

news2025/1/11 3:50:31

近日,由阿里云计算平台大数据基础工程技术团队主导的四篇时间序列相关论文分别被国际顶会ICLR2024、ICDE2024和WWW2024接收。

论文成果是阿里云与华东师范大学、浙江大学、南京大学等高校共同研发,涉及时间序列与智能运维结合的多个应用场景。包括基于Pathways架构的自适应多尺度时间序列预测模型Pathformer;基于扰动技术的时间序列解释框架ContraLSP;多正常模式感知的频域异常检测算法MACE;轻量数据依赖的异常检测重训练方法LARA。此次,时间序列相关模型等多篇论文的入选,表明阿里云在大数据基础技术领域的研究得到了国际学术界的认可,不仅展示了阿里云的技术竞争力,也创造了更多国际合作交流的可能性。

  • ICLR(International Conference on Learning Representations)会议是机器学习和深度学习领域的顶级国际会议,与NeurIPS、ICML并称为机器学习三大顶级会议,在谷歌的全领域学术指标排行榜中位列前十,以展示人工智能、统计学和数据科学领域的深度学习各个方面的前沿研究以及机器视觉、计算生物学、语音识别、文本理解、游戏和机器人等重要应用领域而闻名全球。

  • ICDE(IEEE International Conference on Data Engineering) 是数据库研究领域历史悠久的国际会议,与SIGMOD、VLDB并称为数据库三大顶级会议,会议聚焦于设计,构建,管理和评估高级数据密集型系统和应用等前沿研究问题。

  • WWW(The Web Conference)是为交叉,新兴,综合领域的顶级会议,CCF-A类,会议关注万维网的未来发展,汇聚全世界相关的科研工作者、从业者和领域专家,共同讨论互联网的发展、相关技术的标准化以及这些技术对社会和文化的影响。

Pathformer:基于Pathways架构的自适应多尺度时间序列预测模型

现实场景中的时间序列在不同的时间尺度展现出不同的变化,如云计算场景中的CPU,GPU,内存等资源需求呈现出日、月、季节等独特尺度的时间模式。这为时间序列预测带来一定的困难。一个好的时间序列预测模型需要考虑完备的时序多尺度建模能力以及进一步自适应选择多尺度的能力。

基于Transformer模型的多尺度建模,主要有两个挑战。

1. 不完备的多尺度建模。只是针对时间分辨率不能有效地捕捉不同范围的时间依赖关系,相反,考虑时间距离虽然能提取不同范围的时间依赖,但全局和局部间隔受到数据划分的影响,单一的时间分辨率并不完备。

2. 固定地多尺度建模过程。对所有时序采用固定的多尺度建模阻碍了每个时序的重要特征捕捉,然而为每个数据集或每个时序手动调整最佳尺度非常耗时且难以处理。

针对这些问题,我们提出了一个基于Pathways架构的自适应多尺度Transformer模型 Pathformer,它整合了时间分辨率和时间距离提出了一个多尺度Transfomer模块,使用双重注意力机制建模局部和全局的时间依赖关系,使模型具备完备的多尺度建模能力。其次,我们提出自适应pathways,激活Transformer的多尺度间建模能力。它基于输入时序逐层地路由和聚合多尺度特征形成了自适应pathways的多尺度建模,可以提升模型的预测效果和泛化性。

图片

ContraLSP:基于对比稀疏扰动技术的时间序列解释框架

在智能运维等领域,为机器学习模型所做的预测提供可靠的解释具有极高的重要性。现有的解释方法涉及使用显著性方法,这些方法的解释区分取决于它们与任意模型的交互方式。一些工作建立了显著图,例如,结合梯度或构造注意力机制,以更好地处理时间序列特征,而它们难以发现时间序列模式。其他替代方法,包括Shapley值或LIME,通过加权线性回归在局部近似模型预测,为我们提供解释。这些方法主要提供实例级别的显著图,但特征间的互相关常常导致显著的泛化误差。在时间序列中最常见的基于扰动的方法通常通过基线、生成模型或使数据无信息的特征来修改数据,但这些扰动的非显著区域并不总是无意义的并且存在不在数据分布内的样本,导致解释模型存在偏差。

基于此,本文提出了ContraLSP框架,该框架如图所示。这是一个局部稀疏解释模型,它通过引入反事实样本来构建无信息扰动同时保持样本分布。此外,我们融入了特定于样本的稀疏门控机制来生成更倾向于二值化且平滑的掩码,这有助于简洁地整合时间趋势并精选显著特征。在保证标签的一致性条件下,其整体优化目标为:

图片

图片

论文在白盒时序预测,黑盒时序分类等仿真数据,和真实时序数据集分类任务中进行了实验,ContraLSP在解释性能上超越了SOTA模型,显著提升了时间序列数据解释的质量。

MACE:多正常模式感知的频域异常检测算法

异常检测是智能运维领域的重要研究方向。近来,基于重构类方法的异常检测模型独占鳌头,在无监督异常检测中达到了很高的准确度,涌现了大量优秀的神经网络模型,例如:基于RNN类的神经网络OmniAnomaly, MSCRED; 基于transformer类的神经网络AnomalyTransformer, DCdetector等,但这类方法一个模型只能较好地捕捉一种或少数几种正常模式。因此,涌现出了一批以元学习为辅助,快速适应不同正常模式的异常检测模型,例如PUAD, TranAD等。但这些方法依然要求对不同的正常模式定制不同的模型,当存在十万级不同正常模式的服务时,很难维护这么多神经网络模型。

与其他神经网络直接从数据样本中判断当前样本是否为异常不同,MACE从数据样本与该数据样本对应的正常模式的关系中提取异常。在MACE中,我们首先提出使用频域表征机制提取出正常模式的频域子空间,并使用频域表征技术把当前数据样本映射到该频域子空间中。若该数据样本离这个正常模式的频域子空间越远则在映射后,映射点与原始样本距离越远,重构误差越大。若该数据样本离这个频域子空间的频域子空间越近,则在映射后,映射点与原始样本距离越近,重构误差越小。因此,我们可以根据当前数据样本与其对应的正常模式频域子空间的关系,令对于当前正常模式而言的正常数据重构误差远小于异常数据的重构误差,以此检测异常。更进一步,我们提出上下文感知的傅里叶变换和反变换机制,有效利用频域的稀疏性提升计算效率,在频域上不存在时序依赖,可以对该模型进行细粒度的高并发实现,进一步减少异常检测的时间开销。另外,我们提出Peak Convolution与Valley Convolution机制对短期异常进行增强使其更容易被检测到。

图片

LARA:轻量数据依赖的异常检测重训练方法

在云服务的监控场景中,经常出现正常模式随时间不断变化,且在变化初期观测数据数量不足以支撑模型训练的问题。目前,可以解决正常模式更替变化的方法主要有迁移学习、元学习、基于信号处理的方法。但同时他们也存在一些弊端,并不完全适配当前问题。例如迁移学习未考虑本问题中多个历史正常模式之间存在的时序关系。元学习同样未考虑历史正常模式之间的时序关系,同时,需要存储大量的历史数据。基于信号处理的方法,这类方法推理阶段时间开销太大,无法在流量峰值处进行实时异常检测。

因此,我们提出方法LARA解决上述问题。为了解决重训练新观测数据不足的问题,我们提出反刍模块,该模块使用老模型恢复历史分布中与新观测数据相似的数据,并使用历史数据与新观测数据一起估计每一个新观测数据的隐藏状态z。为了解决重训练计算开销大的问题,我们使用映射函数M_z和M_x分别把老模型输出的隐藏状态和重构数据映射为当前分布的隐藏状态估计值与新观测数据,并数学证明了映射函数令映射误差最小的最优形式为线性,极大降低了重训练开销。更进一步,我们根据M_z 与M_x的形式,提出一种相应的损失函数设计范式,可以保证重训练问题是一个凸问题,具有唯一全局最优解,从而保证较快的收敛速率,降低重训练计算开销,避免陷入过拟合

图片

论文链接

▶论文标题Pathformer: Multi-Scale Transformers With Adaptive Pathways For Time Series Forecasting

  • 论文作者:陈鹏, 张颖莹, 程云爻, 树扬, 王益杭, 文青松, 杨彬, 郭晨娟

  • 论文链接:https://openreview.net/pdf?id=lJkOCMP2aW

  • 代码链接:

    https://github.com/alibaba/sreworks-ext/tree/main/aiops/Pathformer_ICLR2024

论文标题:Explaining Time Series via Contrastive and Locally Sparse Perturbations

  • 论文作者:刘子川,张颖莹,王天纯,王泽凡,骆东升,杜梦楠,吴敏,王毅,陈春林,范伦挺,文青松

  • 论文链接:https://openreview.net/pdf?id=qDdSRaOiyb

  • 代码链接:

    https://github.com/alibaba/sreworks-ext/tree/main/aiops/ContraLSP

论文标题:Learning Multi-Pattern Normalities in the Frequency Domain for Efficient Time Series Anomaly Detection

  • 论文作者:陈飞佚,张颖莹,秦臻,范伦挺,姜仁河,梁宇轩,文青松,邓水光

  • 论文链接:https://arxiv.org/abs/2311.16191

论文标题:LARA: ALight and Anti-overfitting Retraining Approach for   Unsupervised Time Series Anomaly Detection  

  • 论文作者:陈飞佚,秦臻,周孟初,张颖莹,邓水光,范伦挺,庞观

  • 论文链接:https://arxiv.org/abs/2310.05668

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1651246.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2024DCIC海上风电出力预测Top方案 + 光伏发电出力高分方案学习记录

海上风电出力预测 赛题数据 海上风电出力预测的用电数据分为训练组和测试组两大类,主要包括风电场基本信息、气象变量数据和实际功率数据三个部分。风电场基本信息主要是各风电场的装机容量等信息;气象变量数据是从2022年1月到2024年1月份,…

大数据Scala教程从入门到精通第三篇:Scala和Java的关系

一:Scala和Java的关系 1:详解 一般来说,学 Scala的人,都会 Java,而 Scala 是基于 Java 的,因此我们需要将 Scala和 Java 以及 JVM 之间的关系搞清楚,否则学习 Scala 你会蒙圈 Scala可以使用SDK…

力扣70 爬楼梯 C语言 动态规划 递归

题目 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 示例 1: 输入:n 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 1 阶 2. 2 阶 示例 2…

leetCode75. 颜色分类

leetCode75. 颜色分类 题目思路 代码 class Solution { public:void sortColors(vector<int>& nums) {for(int i 0, j 0, k nums.size() - 1; i < k;){if(nums[i] 0) swap(nums[i],nums[j]);else if(nums[i] 2) swap(nums[i],nums[k--]);else if(nums[i] …

前端数据可视化基础(折线图)

目录 前言&#xff1a; 画布&#xff1a; 折线图 (Line Chart): 前言&#xff1a; 前端中的数据可视化是指将大量数据以图形或图像的形式在前端页面上展示出来&#xff0c;以便用户能够更直观地理解和分析这些数据。数据可视化是一种强大的工具&#xff0c;它利用了人类视觉…

韩顺平0基础学Java——第5天

p72——p86 今天同学跟我说别学java&#xff0c;真的吗&#xff1f;唉&#xff0c;先把这视频干完吧。 逻辑运算符练习 x6&#xff0c;y6 x6&#xff0c;y5 x11&#xff0c;y6 x11&#xff0c;y5 z48 错了&a…

深度学习实战76-基于目标检测YOLOv5模型的迁移学习使用方法,YOLOv5的原理与结构

大家好,我是微学AI,今天给大家介绍一下深度学习实战76-基于目标检测YOLOv5模型的迁移学习使用方法,YOLOv5的原理与结构。YOLOv5(You Only Look Once version 5)是一种先进的目标检测算法,基于深度学习的单阶段目标检测模型。它的主要原理是通过一次前向传播就同时预测图像…

关于vs2019 c++ STL 中容器的迭代器的 -> 运算符的使用,以 list 双向链表为例

&#xff08;1&#xff09;如下的结构体 A &#xff0c;若有指针 p new A() &#xff1b;则可以使用 p->m &#xff0c; p->n 解引用运算符。 struct A { int m ; int n; } 对于 STL 中提供的迭代器&#xff0c;提供了类似于指针的功能。对迭代器也可以使用 -> 运算…

解析Linux键盘组合键产生信号的完整过程:从硬件中断到信号发送

前言 每一个了解Linux的都知道这样一个知识&#xff0c;CtrlC组合键能够终止一个进程。 个人了解进程相关知识之后知道&#xff0c;一个进程被终止只会有有三种情况&#xff1a; 代码运行完毕&#xff0c;结果正确代码运行完毕&#xff0c;结果不正确代码运行异常&#xff…

alpine安装中文字体

背景 最近在alpine容器中需要用到中文字体处理视频&#xff0c;不想从本地拷贝字体文件&#xff0c; 所以找到了一个中文的字体包font-droid-nonlatin&#xff0c;在此记录下。 安装 apk add font-droid-nonlatin安装好后会出现在目录下/usr/share/fonts/droid-nonlatin/ 这…

【6D位姿估计】GDR-Net 单目几何引导的直接回归模型

前沿 本文介绍6D位姿估计的直接回归方法GDR-Net&#xff0c;它从单个RGB图像中确定物体在三维空间中的位置和方向。 它是一个端到端模型&#xff0c;与传统的间接方法不同&#xff0c;GDR-Net可以通过反向传播完全训练&#xff0c;简化了训练过程。 论文地址&#xff1a;GDR…

HCIP的学习(13)

第五章&#xff0c;重发布和路由策略 重发布 ​ 在路由协议的边界设备上&#xff0c;将某一种路由协议的路由信息引入到另一种路由协议中&#xff0c;这个操作被称为路由引入或者路由重分发。----技术本质为重发布。 条件 必须存在ASBR设备&#xff08;路由边界设备&#x…

暗区突围进不去/游戏无法启动/掉帧卡顿/报错的解决方法

暗区突围是一款高拟真硬核射击手游&#xff0c;打造了全新的沉浸式暗区战局体验&#xff0c;发行商是腾讯公司。这个游戏名词虽然看起来有些陌生&#xff0c;但其本身的玩法内核毫无疑问的是&#xff0c;这款游戏在画面质量和枪械操作方面&#xff0c;都是手游市场上同类游戏中…

《构建高效的财务管理系统:设计与实现》

在当今数字化时代&#xff0c;企业财务管理系统的设计与实现至关重要。一个高效的财务管理系统不仅能够提高企业的运营效率&#xff0c;还能够增强企业的竞争力&#xff0c;为企业的发展提供有力支持。本文将探讨财务管理系统的设计与实现&#xff0c;为企业打造一套符合自身需…

Raft共识算法图二解释

下面是有关Raft协议中不同术语和概念的翻译及解释&#xff1a; 术语和概念&#xff1a; 任期号&#xff08;term number&#xff09;&#xff1a;用来区分不同的leader。前一个日志槽位的信息&#xff08;prelogIndex&#xff09;&#xff1a;这是前一个日志条目的索引&#…

【容器】k8s获取的节点oom事件并输出到node事件

在debug k8s node不可用过程中&#xff0c;有可能会看到: System OOM encountered, victim process: xx为了搞清楚oom事件是什么&#xff0c;以及如何产生的&#xff0c;我们做了一定探索&#xff0c;并输出了下面的信息。&#xff08;本文关注oom事件是如何生成&传输的&a…

LeetCode-1463. 摘樱桃 II【数组 动态规划 矩阵】

LeetCode-1463. 摘樱桃 II【数组 动态规划 矩阵】 题目描述&#xff1a;解题思路一&#xff1a;动态规划一般有自顶向下和自底向上两种编写方式&#xff0c;其中自顶向下也被称为「记忆化搜索」。解题思路二&#xff1a;0解题思路三&#xff1a;0 题目描述&#xff1a; 给你一…

HBase 读写流程

HBase 读写流程 1. 读流程 Client先访问zookeeper&#xff0c;从zookeeper获取meta region的位置从meta region中读取meta表中的数据&#xff0c;meta中存储了用户表的region信息&#xff1b;根据namespace、表名和rowkey在meta表中找到对应的region信息&#xff1b;找到这个r…

深入剖析Spring框架:推断构造方法与@Bean注解的内部机制

你好&#xff0c;我是柳岸花开。 Spring框架作为Java开发中广泛使用的基础架构&#xff0c;其设计精巧、功能强大&#xff0c;尤其是其依赖注入&#xff08;DI&#xff09;和控制反转&#xff08;IoC&#xff09;特性&#xff0c;极大地提高了代码的可维护性和可测试性。本文将…

9. Django Admin后台系统

9. Admin后台系统 Admin后台系统也称为网站后台管理系统, 主要对网站的信息进行管理, 如文字, 图片, 影音和其他日常使用的文件的发布, 更新, 删除等操作, 也包括功能信息的统计和管理, 如用户信息, 订单信息和访客信息等. 简单来说, 它是对网站数据库和文件进行快速操作和管…