【Java 刷题记录】前缀和

news2025/1/12 20:47:51

前缀和

25. 一维前缀和

在这里插入图片描述

示例1:

输入:

3 2
1 2 4
1 2
2 3

输出:

3
6
import java.util.Scanner;

// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        // 注意 hasNext 和 hasNextLine 的区别
        while (in.hasNextInt()) { // 注意 while 处理多个 case
            int n = in.nextInt();
            int q = in.nextInt();
            long[] dp = new long[n + 1];
            for(int i = 1; i < n + 1; i++) {
                int number = in.nextInt();
                dp[i] = dp[i - 1] + number;
            }
            for(int i = 0; i < q; i++) {
                int start = in.nextInt();
                int end = in.nextInt();
                System.out.println(dp[end] - dp[start - 1]);
            }    
        }
    }
}

26. 二维前缀和

在这里插入图片描述

示例1:

输入:

3 4 3
1 2 3 4
3 2 1 0
1 5 7 8
1 1 2 2
1 1 3 3
1 2 3 4

输出:

8
25
32

备注:

读入数据可能很大,请注意读写时间。
import java.util.Scanner;

// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        // 注意 hasNext 和 hasNextLine 的区别
        while (in.hasNextInt()) { // 注意 while 处理多个 case
            int n = in.nextInt();
            int m = in.nextInt();
            int q = in.nextInt();
            long[][] dp = new long[n + 1][m + 1];
            for(int i = 1; i <= n; i++) {
                for(int j = 1; j <= m; j++) {
                    int num = in.nextInt();
                    dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] + num;
                }
            }
            for(int i = 1; i <= q; i++) {
                int a = in.nextInt();
                int b = in.nextInt();
                int c = in.nextInt();
                int d = in.nextInt();
                long num = dp[a - 1][d] + dp[c][b - 1] - dp[a - 1][b - 1];
                System.out.println(dp[c][d] - num);
            }
        }
    }
}

27. 寻找数组的中心下标

给你一个整数数组 nums ,请计算数组的 中心下标

数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。

如果中心下标位于数组最左端,那么左侧数之和视为 0 ,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。

如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回 -1

示例 1:

输入:nums = [1, 7, 3, 6, 5, 6]
输出:3
解释:
中心下标是 3 。
左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11 ,
右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,二者相等。

示例 2:

输入:nums = [1, 2, 3]
输出:-1
解释:
数组中不存在满足此条件的中心下标。

示例 3:

输入:nums = [2, 1, -1]
输出:0
解释:
中心下标是 0 。
左侧数之和 sum = 0 ,(下标 0 左侧不存在元素),
右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0 。

提示:

  • 1 <= nums.length <= 104
  • -1000 <= nums[i] <= 1000
class Solution {
    public int pivotIndex(int[] nums) {
        int n = nums.length;
        long[] dp = new long[n + 1];
        for(int i = 1; i <= n; i++) {
            dp[i] = dp[i - 1] + nums[i - 1];
        }
        long sum = dp[n];
        for(int i = 1; i <= n; i++) {
            if(sum - dp[i] == dp[i - 1]) return i - 1;
        }
        return -1;
    }
}

28. 除自身以外数组的乘积

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积

题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。

请 **不要使用除法,**且在 O(*n*) 时间复杂度内完成此题。

示例 1:

输入: nums = [1,2,3,4]
输出: [24,12,8,6]

示例 2:

输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]

提示:

  • 2 <= nums.length <= 105
  • -30 <= nums[i] <= 30
  • 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内

**进阶:**你可以在 O(1) 的额外空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组 不被视为 额外空间。)

class Solution {
    public int[] productExceptSelf(int[] nums) {
        int n = nums.length;
        // 1. 初始化前缀🐔、后缀🐔数组
        int[] f = new int[n + 1];
        f[0] = 1;
        int[] g = new int[n + 1];
        g[n] = 1;
        for(int left = 1, right = n - 1; left <= n && right >= 0; left++, right--) {
            f[left] = nums[left - 1] * f[left - 1];
            g[right] = nums[right] * g[right + 1];
        }
        // 2. 使用数组封装结果集
        int[] ret = new int[n];
        for(int i = 0; i < n; i++) {
            ret[i] = f[i] * g[i + 1];
        }
        return ret;
    }
}

29. 和为 K 的子数组

给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数

子数组是数组中元素的连续非空序列。

示例 1:

输入:nums = [1,1,1], k = 2
输出:2

示例 2:

输入:nums = [1,2,3], k = 3
输出:2

提示:

  • 1 <= nums.length <= 2 * 104
  • -1000 <= nums[i] <= 1000
  • -107 <= k <= 107
class Solution {
    public int subarraySum(int[] nums, int k) {
        // 1. 初始化哈希表
        Map<Integer, Integer> hash = new HashMap<>();
        hash.put(0, 1);
        // 2. 遍历数组进行统计
        int sum = 0;
        int ret = 0;
        for(int num : nums) {
            // 当前前缀和
            sum += num;
            // 统计
            ret += hash.getOrDefault(sum - k, 0);
            // sum 加入哈希表
            hash.put(sum, hash.getOrDefault(sum, 0) + 1);
        }
        return ret;
    }
}

30. 和可被 K 整除的子数组

给定一个整数数组 nums 和一个整数 k ,返回其中元素之和可被 k 整除的(连续、非空) 子数组 的数目。

子数组 是数组的 连续 部分。

示例 1:

输入:nums = [4,5,0,-2,-3,1], k = 5
输出:7
解释:
有 7 个子数组满足其元素之和可被 k = 5 整除:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]

示例 2:

输入: nums = [5], k = 9
输出: 0

提示:

  • 1 <= nums.length <= 3 * 104
  • -104 <= nums[i] <= 104
  • 2 <= k <= 104
class Solution {
    public int subarraysDivByK(int[] nums, int k) {
        // 1. 初始化哈希表
        int[] hash = new int[k];
        hash[0] = 1;
        // 2. 统计
        int sum = 0;
        int ret = 0;
        for(int num : nums) {
            sum += num;
            int m = (sum % k + k) % k;
            ret += hash[m];
            hash[m]++;
        }
        return ret;
    }
}

31. 连续数组

给定一个二进制数组 nums , 找到含有相同数量的 01 的最长连续子数组,并返回该子数组的长度。

示例 1:

输入: nums = [0,1]
输出: 2
说明: [0, 1] 是具有相同数量 0 和 1 的最长连续子数组。

示例 2:

输入: nums = [0,1,0]
输出: 2
说明: [0, 1] (或 [1, 0]) 是具有相同数量0和1的最长连续子数组。

提示:

  • 1 <= nums.length <= 105
  • nums[i] 不是 0 就是 1
class Solution {
    public int findMaxLength(int[] nums) {
        int n =  nums.length;
        // 1. 转化
        for(int i = 0; i < n; i++) {
            nums[i] = nums[i] == 0 ? -1 : 1;
        }
        // 2. 初始化哈希表
        Map<Integer, Integer> hash = new HashMap<>();
        hash.put(0, -1);
        // 3. 遍历数组进行统计
        int sum = 0;
        int ret = 0;
        for(int i = 0; i < n; i++) {
            sum += nums[i];
            // 前面有没有前缀和为 sum 的
            if(hash.containsKey(sum)) {
                // 更新 ret
                ret = Math.max(i - hash.get(sum), ret);
            } else {
                // 进入哈希表
                hash.put(sum, i);
            }
        }
        return ret;
    }
}

32. 矩阵区域和

给你一个 m x n 的矩阵 mat 和一个整数 k ,请你返回一个矩阵 answer ,其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和:

  • i - k <= r <= i + k,
  • j - k <= c <= j + k
  • (r, c) 在矩阵内。

示例 1:

输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 1
输出:[[12,21,16],[27,45,33],[24,39,28]]

示例 2:

输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 2
输出:[[45,45,45],[45,45,45],[45,45,45]]

提示:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n, k <= 100
  • 1 <= mat[i][j] <= 100
class Solution {

    public int sum(int[][] dp, int i, int j, int k, int m, int n) {
        int x1 = i - k + 1;
        int y1 = j - k + 1;
        int x2 = i + k + 1;
        int y2 = j + k + 1;
        x1 = x1 >= 1 ? x1 : 1;
        y1 = y1 >= 1 ? y1 : 1;
        x2 = x2 <= m ? x2 : m;
        y2 = y2 <= n ? y2 : n;
        return sum(dp, x1, y1, x2, y2);
    }

    public int sum(int[][] dp, int x1, int y1, int x2, int y2) {
        return dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1];
    }

    public int[][] matrixBlockSum(int[][] mat, int k) {
        // 1. 搞一个前缀和矩阵
        int m = mat.length;
        int n = mat[0].length;
        int[][] dp = new int[m + 1][n + 1];
        for(int i = 1; i <= m; i++) {
            for(int j = 1; j <= n; j++) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] + mat[i - 1][j - 1];
            }
        }
        // 2. 构造结果集
        int[][] ret = new int[m][n];
        for(int i = 0; i < m; i++) {
            for(int j = 0; j < n; j++) {
                ret[i][j] = sum(dp, i, j, k, m, n);
            }
        }
        return ret;
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1650699.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【强化学习】公平性Actor-Critic算法

Bringing Fairness to Actor-Critic Reinforcement Learning for Network Utility Optimization 阅读笔记 Problem FormulationLearning AlgorithmLearning with Multiplicative-Adjusted RewardsSolving Fairness Utility Optimization Evaluations 在网络优化问题中&#xff…

PyGame 文字显示问题及解决方法

在 Pygame 中显示文字时可能会遇到一些问题&#xff0c;例如文字显示不清晰、字体不正确或者文字位置不准确等。以下是一些常见的问题及其解决方法&#xff0c;具体情况可以看看情况。 1、问题背景 一位用户在使用 PyGame 库进行游戏开发时&#xff0c;遇到了一个问题&#xf…

[AI OpenAI-doc] 迁移指南 Beta

我们已经改变了助手 API 在 beta 的 v1 版本和 v2 版本之间工具和文件的工作方式。今天&#xff0c;通过 API&#xff0c;两个 beta 版本仍然可以访问&#xff0c;但我们建议尽快迁移到我们 API 的最新版本。我们将在 2024 年底之前废弃 beta 的 v1 版本。 如果您今天不使用助手…

套管外径测量仪 多尺寸型号 规格全可定制

套管&#xff08;bushing&#xff09;是一种将带电导体引入电气设备或穿过墙壁的一种绝缘装置。前者称为电器套管&#xff0c;后者称为穿墙套管。套管通常用在建筑地下室&#xff0c;是用来保护管道或者方便管道安装的铁圈。套管的分类有刚性套管、柔性防水套管、钢管套管及铁皮…

SpringBoot中HandlerInterceptor拦截器的构建详细教程

作用范围&#xff1a;拦截器主要作用于Spring MVC的DispatcherServlet处理流程中&#xff0c;针对进入Controller层的请求进行拦截处理。它基于Java的反射机制&#xff0c;通过AOP&#xff08;面向切面编程&#xff09;的思想实现&#xff0c;因此它能够访问Spring容器中的Bean…

Python-VBA函数之旅-property函数

目录 一、property函数的常见应用场景 二、property函数使用注意事项 三、如何用好property函数&#xff1f; 1、property函数&#xff1a; 1-1、Python&#xff1a; 1-2、VBA&#xff1a; 2、推荐阅读&#xff1a; 个人主页&#xff1a;神奇夜光杯-CSDN博客 一、prop…

【北京迅为】《iTOP-3588开发板源码编译手册》-第4章 Android12/Linux设备树简介

RK3588是一款低功耗、高性能的处理器&#xff0c;适用于基于arm的PC和Edge计算设备、个人移动互联网设备等数字多媒体应用&#xff0c;RK3588支持8K视频编解码&#xff0c;内置GPU可以完全兼容OpenGLES 1.1、2.0和3.2。RK3588引入了新一代完全基于硬件的最大4800万像素ISP&…

4.【Orangepi Zero2】Linux定时器(signal、setitimer),软件PWM驱动舵机(SG90)

Linux定时器&#xff08;signal、setitimer&#xff09;&#xff0c;软件PWM驱动舵机&#xff08;SG90&#xff09; signalsetitimer示例 软件PWM驱动舵机&#xff08;SG90&#xff09; signal 详情请看Linux 3.进程间通信&#xff08;shmget shmat shmdt shmctl 共享内存、si…

帆软报表实现填报报表

我们拿emp表举例 登记信息表 设计一个报表实现对emp表员工的登记 &#xff08;emp表为ORACLE自带用户scott下的一个表&#xff09; 首先&#xff0c;我们设计好填报界面&#xff0c;新建一个普通报表&#xff0c;将emp表中需要的输入一一回应填写进表中。 如下图所示&#xf…

代码随想录Day 40|Leetcode|Python|139.单词拆分 ● 关于多重背包,你该了解这些! ● 背包问题总结篇!

139.单词拆分 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。 注意&#xff1a;不要求字典中出现的单词全部都使用&#xff0c;并且字典中的单词可以重复使用。 解题思路&#xff1a; 确定dp数组含义…

如何去官网下载windows10操作系统iso镜像

文章目录 一、先从微软中国官网https://www.microsoft.com/zh-cn/进去二、然后按图示一步步点进去三、点击下载工具这个工具会帮你生成windows操作系统iso文件四、下载好后一步步按图示要求成功操作 一、先从微软中国官网https://www.microsoft.com/zh-cn/进去 二、然后按图示一…

【牛客】排列计算

原题链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 如果直接涂色来计算单点权重&#xff0c;2e5*2e5必然超时。 所以用差分进行优化。 3. 代码实现 #include<bits/stdc.h> using name…

【工作记录】openjdk-22基础镜像的构建

背景 近期使用到的框架底层都用的是springboot3.0&#xff0c;要求jdk版本在17甚至更高。 于是决定制作一个基于openjdk22的基础镜像&#xff0c;本文对这一过程进行记录。 作为记录的同时也希望能够帮助到需要的朋友。 期望效果 容器内可以正常使用java相关命令且版本是2…

vm虚拟机安装网络适配器驱动卡死/无响应/无限等待状态

大部分原因都是以前的vm没有卸载干净所导致的&#xff0c;只需要使用CCleaner清楚干净就好 使用控制面板里的卸载把VM卸载干净 使用CCleaner软件删除干净注册表&#xff0c;这个软件百度很容易找到&#xff0c;只有十兆左右 打开下载好的软件&#xff0c;不需要注册码&#xff…

保研面试408复习 2——操作系统、计网

文章目录 1、操作系统一、进程、线程的概念以及区别&#xff1f;二、进程间的通信方式&#xff1f; 2、计算机网络一、香农准则二、协议的三要素1. 语法2. 语义3. 时序 标记文字记忆&#xff0c;加粗文字注意&#xff0c;普通文字理解。 1、操作系统 一、进程、线程的概念以及…

Pycharm无法链接服务器环境(host is unresponsived)

困扰了很久的一个问题&#xff0c;一开始是在服务器ubuntu20.04上安装pycharm community&#xff0c;直接运行服务器上的pycharm community就识别不了anaconda中的环境 后来改用pycharm professional也无法远程连接上服务器的环境&#xff0c;识别不了服务器上的环境&#xff…

ASP.NET网上鲜花销售系统的设计

摘 要 本系统实现了一般电子商务所具备的功能&#xff0c;如商品浏览、用户登录注册、网上与购物、结算、后台数据库管理等&#xff0c;利用这些功能可以对鲜花销售信息进行较好的管理。 网上鲜花销售系统的使用者主要是客户和销售管理者&#xff0c;对于客户来说&#xff0…

小米手机miui14 android chrome如何取消网页自动打开app

搜索媒体打开应用 选择你要阻止打开的app&#xff0c;以github为例 取消勾选打开支持的链接。 参考&#xff1a;https://www.reddit.com/r/chrome/s/JBsGkZDkRZ

期权怎么开户?

今天期权懂带你了解期权怎么开户&#xff1f;近年来&#xff0c;随着股市的持续低迷&#xff0c;市场交易痛点越发明显的氛围中&#xff0c;所以有人看到了双向交易的期权。 期权怎么开户&#xff1f; 1、首先是证券账户内的资金需要满足50万保留20个交易日&#xff1b; 2、其…

算法提高之树的最长路径

算法提高之树的最长路径 核心思想&#xff1a;树形dp 枚举路径的中间节点用f1[i] 表示i的子树到i的最长距离,f2[i]表示次长距离最终答案就是max(f1[i]f2[i]) #include <iostream>#include <cstring>#include <algorithm>using namespace std;const int N …