【强化学习】公平性Actor-Critic算法

news2025/1/12 22:46:01

Bringing Fairness to Actor-Critic Reinforcement Learning for Network Utility Optimization 阅读笔记

  • Problem Formulation
  • Learning Algorithm
    • Learning with Multiplicative-Adjusted Rewards
    • Solving Fairness Utility Optimization
  • Evaluations

在网络优化问题中,公平性(fairness)是一个重要的考虑指标。随着越来越多的设备接入网络中,网络中的资源分配、任务调度等需要充分考虑设备之间的公平性,在系统效率与用户公平性之间达到一种平衡。近年来,强化学习被成功应用于网络优化问题的在线决策中,然而大部分算法聚焦于最大化所有agent的长期收益,很少考虑公平性。在这样的背景下,作者提出了一种fairness Actor-Critic algorithm,该算法将公平性融入到AC算法的设计中,旨在优化整体公平效用函数。具体做法为,设计了一种适应性奖励,在原奖励的基础上乘以一个权重,该权重与效用函数和过去的奖励有关。实验部分,作者将算法用于求解网络调度问题(convex)与视频流QoE优化问题(non-convex),说明了算法的有效性。

Problem Formulation

考虑一个网络效用优化问题,网络建模为环境,用户是agents,agent与环境进行交互,学习策略来优化rewards(如数据率等)。假设有K个agents,使用随机策略(stochastic policy) π \pi π(a|s)表示状态s下选择动作a的概率。 x π , k x_{\pi,k} xπ,k代表agent k在策略 π \pi π下的平均奖励
在这里插入图片描述
在本文中,使用 α \alpha α-fiar 效用函数,该函数广泛应用于网络优化领域。对于任意的 α \alpha α >= 0,有
在这里插入图片描述

Learning Algorithm

假定在任何策略下的马尔科夫链都是不可还原/非周期性的。

Learning with Multiplicative-Adjusted Rewards

为了优化公平效用,在算法中需要追踪历史reward。为什么能使用过去历史reward来实现公平呢?
假设这样一个场景,两个agent分别有自己的reward,在某个策略下,如果截至到epoch t时agent 1比agent 2获得了更多的累积奖励,那么我们需要偏好使用策略梯度更新agent 2而不是agent 1。因此过去历史reward能够用于优化公平性。
使用 h π , t h_{\pi, t} hπ,t表示截止epoch t从采样路径中获得的数据,使用一个一致连续函数( uniformly-continuous function) ϕ ( h π , t ) \phi(h_{\pi, t}) ϕ(hπ,t)计算奖励的乘子。一致连续函数本身是“公平性”的体现。定义适应性奖励(adjust rewards)为
在这里插入图片描述
使用 ρ π ^ \hat{\rho_{\pi}} ρπ^表示MDP下平均单步适应性奖励,定义状态价值函数和动作价值函数如下:
在这里插入图片描述
可以看到,V和Q都是有边界的。定义一个增强函数
在这里插入图片描述
因为适应性奖励依赖于过去的历史h,所以标准RL的策略梯度理论不再适用适应性奖励。重新分析MDP。

在这里插入图片描述
当策略参数发生微小改变,平均奖励的改变如上式。
证明:定义新的状态 z t = [ s t , h π , t ] z_t = [s_t, h_{\pi, t}] zt=[st,hπ,t],新的马尔可夫过程为状态 z t z_t zt、动作 a t a_t at和奖励 r k , t ^ \hat{r_{k,t}} rk,t^的链。使用 p z z ′ a p^a_{zz'} pzza表示状态转移概率, V π ( z ) V_{\pi}(z) Vπ(z) Q π ( z , a ) Q_{\pi}(z,a) Qπ(z,a)为状态-值函数、动作-值函数。用 P π ( z ∣ s ) P^{\pi}(z|s) Pπ(zs)表示对于给定的状态s发生z的有限概率。Q函数与V函数表示如下
在这里插入图片描述
定义一个辅助函数
在这里插入图片描述
其中 A π ( z , a ) = Q π ( z , a ) − V π ( z , a ) A_{\pi}(z,a) = Q_{\pi}(z,a) - V_{\pi}(z,a) Aπ(z,a)=Qπ(z,a)Vπ(z,a)。则有
在这里插入图片描述
因为 ∑ a π ( a ∣ s ) Q π ( z , a ) = V π ( z ) \sum_{a}\pi(a|s)Q_{\pi}(z,a) = V_{\pi}(z) aπ(as)Qπ(z,a)=Vπ(z), 所以根据推导,有 G θ + ϵ , θ + ϵ , θ + ϵ G_{\theta+\epsilon, \theta+\epsilon, \theta+\epsilon} Gθ+ϵ,θ+ϵ,θ+ϵ = 0 。上述推导的最后一步中,第一项和第三项能够消掉,最后得到
在这里插入图片描述
当策略参数发生的改变 ϕ \phi ϕ十分微小,策略 π θ \pi_{\theta} πθ的相应改变可以用 ϵ ∇ π θ ( a ∣ s ) + O ( ∣ ∣ ϵ ∣ ∣ 2 2 ) \epsilon \nabla \pi_{\theta}(a|s) + O(||\epsilon||^2_2) ϵπθ(as)+O(∣∣ϵ22)来bound。那么有
在这里插入图片描述
在这里插入图片描述
以上的梯度和较小的学习率能够使得算法收敛到一个平稳点。
策略梯度算法如下:(类似于REINFORCE算法)
在这里插入图片描述

Solving Fairness Utility Optimization

Lemma 2说明了新的策略梯度算法能收敛到适应性MDP的平稳点。定义最优策略的参数为 θ ∗ \theta^* θ,那么初始奖励的单步平均值为
在这里插入图片描述
我们需要证明 θ ∗ \theta^* θ也是优化问题 ∑ k U ( x π θ , k ) \sum_{k}U(x_{\pi_{\theta},k}) kU(xπθ,k)的平稳点。
对于一致连续函数 ϕ \phi ϕ,设定为效用函数U的一阶导数。该函数是符合Lipschitz连续的,有 ∣ U ′ ( x ) − U ′ ( y ) ∣ < = L ∣ x − y ∣ |U'(x) - U'(y)| <= L|x - y| U(x)U(y)<=Lxy, 对于L > 0。那么适应性奖励可以表示为
在这里插入图片描述
在这里插入图片描述
理论1:策略梯度算法能够收敛至公平效用函数的平稳点。
证明:由上已知, θ ∗ \theta^* θ是适应性MDP的平稳点,即 ∇ θ ρ π θ ^ ∣ θ = θ ∗ = 0 \nabla_{\theta} \hat{\rho_{\pi_{\theta}}} |_{\theta=\theta^* }= 0 θρπθ^θ=θ=0,需要证明 θ ∗ \theta^* θ也是 α \alpha α-fair 效用函数 ∑ k U ( x π θ , k ) \sum_{k} U(x_{\pi_{\theta},k}) kU(xπθ,k)的平稳点,也即 ∇ θ [ ∑ k U ( x π θ , k ) ] ∣ θ = θ ∗ = 0 \nabla_{\theta} [\sum_{k} U(x_{\pi_{\theta},k})] |_{\theta=\theta^* }= 0 θ[kU(xπθ,k)]θ=θ=0
所以我们需要分析单步平均适应性奖励 ρ π θ ^ \hat{\rho_{\pi_{\theta}}} ρπθ^和单步平均奖励 x π θ , k x_{\pi_{\theta},k} xπθ,k的关系

根据公式(17),有
在这里插入图片描述
在policy π θ \pi_{\theta} πθ下,对于任意的 ϵ \epsilon ϵ > 0 存在一个足够大的T使得, ∣ 1 / T ∑ t = 1 T r k , t − x π θ , k ∣ < ϵ |1/T \sum^{T}_{t=1} r_{k,t} - x_{\pi_{\theta},k}| < \epsilon ∣1/Tt=1Trk,txπθ,k<ϵ,结合U’的Lipschitz continuity有
在这里插入图片描述
其中C1是 ∣ U ′ ( x π θ , k ) ∣ |U'(x_{\pi_{\theta},k})| U(xπθ,k)的边界,C2是 ∣ 1 / T ∑ t = 1 T r k , t ∣ |1/T \sum^{T}_{t=1} r_{k,t}| ∣1/Tt=1Trk,t的边界。当T足够大,有
ρ π θ ^ = ∑ k x π θ , k U ′ ( x π θ , k ) \hat{\rho_{\pi_{\theta}}} = \sum_{k} x_{\pi_{\theta},k}U'(x_{\pi_{\theta},k}) ρπθ^=kxπθ,kU(xπθ,k)
由于 θ ∗ \theta^* θ是适应性MDP的平衡点,有 ∇ θ [ x π θ , k U ′ ( x π θ , k ) ] ∣ θ = θ ∗ = 0 \nabla_{\theta} [x_{\pi_{\theta},k}U'(x_{\pi_{\theta},k})] |_{\theta=\theta^* }= 0 θ[xπθ,kU(xπθ,k)]θ=θ=0,也即 ∇ θ ρ π θ ^ ∣ θ = θ ∗ = 0 \nabla_{\theta} \hat{\rho_{\pi_{\theta}}} |_{\theta=\theta^* }= 0 θρπθ^θ=θ=0

上述证明结果可以形成一个新的actor-critic算法,使用 V w ^ ( s t ) \hat{V_{w}}(s_{t}) Vw^(st)作为神经网络近似state-value function,使用TD误差来训练 V w ^ ( s t ) \hat{V_{w}}(s_{t}) Vw^(st)
在这里插入图片描述

Evaluations

两个场景:无线网络调度和QoE优化
结果都表明FAC算法的优势:能够优化全局的效用、收敛速度快。
在这里插入图片描述在这里插入图片描述

————————————————————————————
参考文献:
【1】J. Chen, Y. Wang and T. Lan, “Bringing Fairness to Actor-Critic Reinforcement Learning for Network Utility Optimization,” IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, Vancouver, BC, Canada, 2021, pp. 1-10

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1650693.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PyGame 文字显示问题及解决方法

在 Pygame 中显示文字时可能会遇到一些问题&#xff0c;例如文字显示不清晰、字体不正确或者文字位置不准确等。以下是一些常见的问题及其解决方法&#xff0c;具体情况可以看看情况。 1、问题背景 一位用户在使用 PyGame 库进行游戏开发时&#xff0c;遇到了一个问题&#xf…

[AI OpenAI-doc] 迁移指南 Beta

我们已经改变了助手 API 在 beta 的 v1 版本和 v2 版本之间工具和文件的工作方式。今天&#xff0c;通过 API&#xff0c;两个 beta 版本仍然可以访问&#xff0c;但我们建议尽快迁移到我们 API 的最新版本。我们将在 2024 年底之前废弃 beta 的 v1 版本。 如果您今天不使用助手…

套管外径测量仪 多尺寸型号 规格全可定制

套管&#xff08;bushing&#xff09;是一种将带电导体引入电气设备或穿过墙壁的一种绝缘装置。前者称为电器套管&#xff0c;后者称为穿墙套管。套管通常用在建筑地下室&#xff0c;是用来保护管道或者方便管道安装的铁圈。套管的分类有刚性套管、柔性防水套管、钢管套管及铁皮…

SpringBoot中HandlerInterceptor拦截器的构建详细教程

作用范围&#xff1a;拦截器主要作用于Spring MVC的DispatcherServlet处理流程中&#xff0c;针对进入Controller层的请求进行拦截处理。它基于Java的反射机制&#xff0c;通过AOP&#xff08;面向切面编程&#xff09;的思想实现&#xff0c;因此它能够访问Spring容器中的Bean…

Python-VBA函数之旅-property函数

目录 一、property函数的常见应用场景 二、property函数使用注意事项 三、如何用好property函数&#xff1f; 1、property函数&#xff1a; 1-1、Python&#xff1a; 1-2、VBA&#xff1a; 2、推荐阅读&#xff1a; 个人主页&#xff1a;神奇夜光杯-CSDN博客 一、prop…

【北京迅为】《iTOP-3588开发板源码编译手册》-第4章 Android12/Linux设备树简介

RK3588是一款低功耗、高性能的处理器&#xff0c;适用于基于arm的PC和Edge计算设备、个人移动互联网设备等数字多媒体应用&#xff0c;RK3588支持8K视频编解码&#xff0c;内置GPU可以完全兼容OpenGLES 1.1、2.0和3.2。RK3588引入了新一代完全基于硬件的最大4800万像素ISP&…

4.【Orangepi Zero2】Linux定时器(signal、setitimer),软件PWM驱动舵机(SG90)

Linux定时器&#xff08;signal、setitimer&#xff09;&#xff0c;软件PWM驱动舵机&#xff08;SG90&#xff09; signalsetitimer示例 软件PWM驱动舵机&#xff08;SG90&#xff09; signal 详情请看Linux 3.进程间通信&#xff08;shmget shmat shmdt shmctl 共享内存、si…

帆软报表实现填报报表

我们拿emp表举例 登记信息表 设计一个报表实现对emp表员工的登记 &#xff08;emp表为ORACLE自带用户scott下的一个表&#xff09; 首先&#xff0c;我们设计好填报界面&#xff0c;新建一个普通报表&#xff0c;将emp表中需要的输入一一回应填写进表中。 如下图所示&#xf…

代码随想录Day 40|Leetcode|Python|139.单词拆分 ● 关于多重背包,你该了解这些! ● 背包问题总结篇!

139.单词拆分 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。 注意&#xff1a;不要求字典中出现的单词全部都使用&#xff0c;并且字典中的单词可以重复使用。 解题思路&#xff1a; 确定dp数组含义…

如何去官网下载windows10操作系统iso镜像

文章目录 一、先从微软中国官网https://www.microsoft.com/zh-cn/进去二、然后按图示一步步点进去三、点击下载工具这个工具会帮你生成windows操作系统iso文件四、下载好后一步步按图示要求成功操作 一、先从微软中国官网https://www.microsoft.com/zh-cn/进去 二、然后按图示一…

【牛客】排列计算

原题链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 如果直接涂色来计算单点权重&#xff0c;2e5*2e5必然超时。 所以用差分进行优化。 3. 代码实现 #include<bits/stdc.h> using name…

【工作记录】openjdk-22基础镜像的构建

背景 近期使用到的框架底层都用的是springboot3.0&#xff0c;要求jdk版本在17甚至更高。 于是决定制作一个基于openjdk22的基础镜像&#xff0c;本文对这一过程进行记录。 作为记录的同时也希望能够帮助到需要的朋友。 期望效果 容器内可以正常使用java相关命令且版本是2…

vm虚拟机安装网络适配器驱动卡死/无响应/无限等待状态

大部分原因都是以前的vm没有卸载干净所导致的&#xff0c;只需要使用CCleaner清楚干净就好 使用控制面板里的卸载把VM卸载干净 使用CCleaner软件删除干净注册表&#xff0c;这个软件百度很容易找到&#xff0c;只有十兆左右 打开下载好的软件&#xff0c;不需要注册码&#xff…

保研面试408复习 2——操作系统、计网

文章目录 1、操作系统一、进程、线程的概念以及区别&#xff1f;二、进程间的通信方式&#xff1f; 2、计算机网络一、香农准则二、协议的三要素1. 语法2. 语义3. 时序 标记文字记忆&#xff0c;加粗文字注意&#xff0c;普通文字理解。 1、操作系统 一、进程、线程的概念以及…

Pycharm无法链接服务器环境(host is unresponsived)

困扰了很久的一个问题&#xff0c;一开始是在服务器ubuntu20.04上安装pycharm community&#xff0c;直接运行服务器上的pycharm community就识别不了anaconda中的环境 后来改用pycharm professional也无法远程连接上服务器的环境&#xff0c;识别不了服务器上的环境&#xff…

ASP.NET网上鲜花销售系统的设计

摘 要 本系统实现了一般电子商务所具备的功能&#xff0c;如商品浏览、用户登录注册、网上与购物、结算、后台数据库管理等&#xff0c;利用这些功能可以对鲜花销售信息进行较好的管理。 网上鲜花销售系统的使用者主要是客户和销售管理者&#xff0c;对于客户来说&#xff0…

小米手机miui14 android chrome如何取消网页自动打开app

搜索媒体打开应用 选择你要阻止打开的app&#xff0c;以github为例 取消勾选打开支持的链接。 参考&#xff1a;https://www.reddit.com/r/chrome/s/JBsGkZDkRZ

期权怎么开户?

今天期权懂带你了解期权怎么开户&#xff1f;近年来&#xff0c;随着股市的持续低迷&#xff0c;市场交易痛点越发明显的氛围中&#xff0c;所以有人看到了双向交易的期权。 期权怎么开户&#xff1f; 1、首先是证券账户内的资金需要满足50万保留20个交易日&#xff1b; 2、其…

算法提高之树的最长路径

算法提高之树的最长路径 核心思想&#xff1a;树形dp 枚举路径的中间节点用f1[i] 表示i的子树到i的最长距离,f2[i]表示次长距离最终答案就是max(f1[i]f2[i]) #include <iostream>#include <cstring>#include <algorithm>using namespace std;const int N …

Python批量计算多张遥感影像的NDVI

本文介绍基于Python中的gdal模块&#xff0c;批量基于大量多波段遥感影像文件&#xff0c;计算其每1景图像各自的NDVI数值&#xff0c;并将多景结果依次保存为栅格文件的方法。 如下图所示&#xff0c;现在有大量.tif格式的遥感影像文件&#xff0c;其中均含有红光波段与近红外…