机器学习实践:超市商品购买关联规则分析

news2025/1/12 9:02:31

第2关:动手实现Apriori算法

任务描述

本关任务:编写 Python 代码实现 Apriori 算法。

相关知识

为了完成本关任务,你需要掌握 Apriori 算法流程。

Apriori 算法流程

Apriori 算法的两个输人参数分别是最小支持度和数据集。该算法首先会生成所有单个物品的项集列表。接着扫描交易记录来查看哪些项集满足最小支持度要求,那些不满足最小支持度的集合会被去掉。然后,对剩下来的集合进行组合以生成包含两个元素的项集。接下来,再重新扫描交易记录,去掉不满足最小支持度的项集。该过程重复进行直到所有项集都被去掉。

所以 Apriori 算法的伪代码如下:

 
 
  1. while 集合中的项的个数 > 0:
  2. 构建一个由 k 个项组成的候选项集的列表
  3. 确认每个项集都是频繁的
  4. 保留频繁项集并构建 k+1 项组成的候选项集的列表

从整个算法的流程来看,首先需要实现一个能够构建只有一个项集的函数,代码如下:

 
 
  1. # 构建只有一个元素的项集, 假设dataSet为[[1, 2], [0, 1]. [3, 4]]
  2. # 那么该项集为frozenset({0}), frozenset({1}), frozenset({2}),frozenset({3}), frozenset({4})
  3. def createC1(dataset):
  4. C1 = set()
  5. for t in dataset:
  6. for item in t:
  7. item_set = frozenset([item])
  8. C1.add(item_set)
  9. return C1

有了从无到有之后,接下来需要从 1 到 K 。不过需要注意的是,这个时候需要排除掉支持度小于最小支持度的项集。代码实现如下:

 
 
  1. # 从只有k个元素的项集,生成有k+1个元素的频繁项集,排除掉支持度小于最小支持度的项集
  2. # D为数据集,ck为createC1的输出,minsupport为最小支持度
  3. def scanD(D, ck, minsupport):
  4. ssCnt = {}
  5. for tid in D:
  6. for can in ck:
  7. if can.issubset(tid):
  8. if can not in ssCnt.keys():
  9. ssCnt[can] = 1
  10. else:
  11. ssCnt[can] += 1
  12. numItems = len(D)
  13. reList = []
  14. supportData = {}
  15. for key in ssCnt:
  16. support = ssCnt[key]/numItems
  17. if support >= minsupport:
  18. reList.insert(0, key)
  19. supportData[key] = support
  20. #reList为有k+1个元素的频繁项集,supportData为频繁项集对应的支持度
  21. return reList, supportData

这就完了吗?还没有!我们还需要一个能够实现构建含有 K 个元素的频繁项集的函数。实现代码如下:

 
 
  1. #构建含有k个元素的频繁项集
  2. #如输入为{0},{1},{2}会生成{0,1},{0, 2},{1,2}
  3. def aprioriGen(Lk, k):
  4. retList = []
  5. lenLk = len(Lk)
  6. for i in range(lenLk):
  7. for j in range(i+1, lenLk):
  8. L1 = list(Lk[i])[k:-2]
  9. L2 = list(Lk[j])[:k-2]
  10. if L1 == L2:
  11. retList.append(Lk[i] | Lk[j])
  12. return retList

有了这些小功能后,我们就能根据 Apriori 算法的流程来实现 Apriori 算法了。

编程要求

根据提示,在右侧编辑器 Begin-End 补充代码,实现 Apriori 算法。

测试说明

平台会对你编写的代码进行测试,若与预期输出一致,则算通关。

def createC1(dataset):
    C1 = set()
    for t in dataset:
        for item in t:
            item_set = frozenset([item])
            C1.add(item_set)
    return C1

def scanD(D, ck, minsupport):
    ssCnt = {}
    for tid in D:
        for can in ck:
            if can.issubset(tid):
                if can not in ssCnt.keys():
                    ssCnt[can] = 1
                else:
                    ssCnt[can] += 1
    numItems = len(D)
    reList = []
    supportData = {}
    for key in ssCnt:
        support = ssCnt[key]/numItems
        if support >= minsupport:
            reList.insert(0, key)
        supportData[key] = support
    return reList, supportData

def aprioriGen(Lk, k):
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i+1, lenLk):
            L1 = list(Lk[i])[k:-2]
            L2 = list(Lk[j])[:k-2]
            if L1 == L2:
                retList.append(Lk[i] | Lk[j])
    return retList

def apriori(dataSet,minSupport):
    # 首先找出最开始的数据项集
    C1 = createC1(dataSet)
    D = list(map(set,dataSet))
    # 把只有一个项集的支持率算出来
    L1,supportData = scanD(D,C1,minSupport)
    L = [L1]
    # 设置关联数
    k = 2
    while(len(L[k - 2]) > 0):
        # 然后开始循环找
        Ck = aprioriGen(L[k - 2], k)
        Lk, supK = scanD(D,Ck,minSupport)
        supportData.update(supK)
        L.append(Lk)
        k += 1

    return L,supportData

第3关:从频繁项集中挖掘关联规则

任务描述

本关任务:编写 Python 代码,实现挖掘关联规则的功能。

相关知识

为了完成本关任务,你需要掌握:关联规则挖掘算法流程。

从频繁项集中挖掘关联规则

要找到关联规则,需要从一个频繁项集开始。我们知道集合中的元素是不重复的,但我们想知道基于这些元素能否获得其他内容。例如某个元素或者某个元素集合可能会推导出另一个元素 。从小卖铺的例子可以得到,如果有一个频繁项集{薯片,西瓜},那么就可能有一条关联规则薯片->西瓜。这意味着如果有人购买了薯片,那么在统计上他会购买西瓜的概率较大。

但是,这一条反过来并不总是成立。也就是说,即使薯片->西瓜统计上显著,那么薯片->西瓜也不一定成立。(从逻辑研究上来讲,箭头左边的集合称作前件,箭头右边的集合称为后件。)

那么怎样挖掘关联规则呢?在发现频繁项集时我们发现的是高于最小支持度的频繁项集,对于关联规则,也是用这种类似的方法。以小卖铺的例子为例,从项集{0, 1, 2, 3}产生的关联规则中,找出可信度高于最小可信度的关联规则。(PS:Apriori 原理对于关联规则同样适用。)

所以,想要根据上一关发现的频繁项集中找出关联规则,需要排除可信度比较小的关联规则,所以首先需要实现计算关联规则的可信度的功能。代码实现如下:

 
 
  1. # 计算关联规则的可信度,并排除可信度小于最小可信度的关联规则
  2. # freqSet为频繁项集,H为规则右边可能出现的元素的集合,supportData为频繁项集的支持度,brl为存放关联规则的列表,minConf为最小可信度
  3. def calcConf(freqSet, H, supportData, brl, minConf = 0.7):
  4. prunedH = []
  5. for conseq in H:
  6. conf = supportData[freqSet]/supportData[freqSet - conseq]
  7. if conf >= minConf:
  8. brl.append((freqSet - conseq, conseq, conf))
  9. prunedH.append(conseq)
  10. return prunedH

接下来就需要实现从频繁项集中生成关联规则的功能了,实现如下:

 
 
  1. # 从频繁项集中生成关联规则
  2. # freqSet为频繁项集,H为规则右边可能出现的元素的集合,supportData为频繁项集的支持度,brl为存放关联规则的列表,minConf为最小可信度
  3. def ruleFromConseq(freqSet, H, supportData, brl, minConf = 0.7):
  4. m = len(H[0])
  5. if len(freqSet) > m+1:
  6. Hmp1 = aprioriGen(H, m+1)
  7. Hmp1 = calcConf(freqSet, Hmp1, supporData, brl, minConf)
  8. if len(Hmp1) > 1:
  9. ruleFromConseq(freqSet, Hmp1, supportData, brl, minConf)
编程要求

根据提示,在右侧编辑器 Begin-End 补充代码,将所有知识全部串联起来,实现关联规则生成功能。

测试说明

平台会对你编写的代码进行测试,若与预期输出一致,则算通关

代码:
from utils import apriori, aprioriGen

def calcConf(freqSet, H, supportData, brl, minConf = 0.7):
    prunedH = []
    for conseq in H:
        conf = supportData[freqSet]/supportData[freqSet - conseq]
    if conf >= minConf:
        brl.append((freqSet - conseq, conseq, conf))
        prunedH.append(conseq)
    return prunedH

def ruleFromConseq(freqSet, H, supportData, brl, minConf = 0.7):
    m = len(H[0])
    if len(freqSet) > m+1:
        Hmp1 = aprioriGen(H, m+1)
        Hmp1 = calcConf(freqSet, Hmp1, supporData, brl, minConf)
        if len(Hmp1) > 1:
            ruleFromConseq(freqSet, Hmp1, supportData, brl, minConf)


def generateRules(dataset, minsupport, minConf):
    '''
    生成关联规则,可以使用apriori函数获得数据集中的频繁项集列表与支持度
    :param dataset:数据集,类型为list
    :param minsupport:最小支持度,类型为float
    :param minConf:最小可信度,类型为float
    :return:关联规则列表,类型为list
    '''
    digRuleList = []
    L, supportData = apriori(dataset, minsupport)
    for i in range(1, len(L)):
        # freqSet为含有i个元素的频繁项集
        for freqSet in L[i]:
            H1 = [frozenset([item]) for item in freqSet]
            if i > 1:
                # H1为关联规则右边的元素的集合
                ruleFromConseq(freqSet, H1, supportData, digRuleList, minConf)
            else:
                calcConf(freqSet, H1, supportData, digRuleList, minConf)
    return digRuleList

第4关:超市购物清单关联规则分析

任务描述

本关任务:编写 Python 代码,挖掘出超市购物清单中潜在的关联规则。

相关知识

为了完成本关任务,你需要掌握:将知识运用到实际数据中。

超市购物清单关联规则分析

这里有一份超市的购物清单数据,数据的特征只有 3 个,分别为:交易时间,交易 id 和商品名称。如下图所示:

可以看出,在挖掘关联规则之前,我们需要整理一下数据,即根据交易 id 来将商品信息聚合起来,将数据变成我们关联规则分析算法所需要的形式。

当数据处理好之后,我们就可以使用之前编写的代码,来挖掘该数据的关联规则了。

编程要求

根据提示,在右侧编辑器 Begin-End 处补充代码,实现超市购物清单数据的关联规则挖掘功能。要求如下:

1.将所有商品名称转换为数字,转换关系如下:

 
 
  1. {'yogurt':1, 'pork':2, 'sandwich bags':3, 'lunch meat':4, 'all- purpose':5, 'flour':6, 'soda':7, 'butter':8, 'vegetables':9, 'beef':10, 'aluminum foil':11, 'dinner rolls':12, 'shampoo':13, 'mixes':14, 'soap':15, 'laundry detergent':16, 'ice cream':17, 'toilet paper':18, 'hand soap':19, 'waffles':20, 'cheeses':21, 'milk':22, 'dishwashing liquid/detergent':23, 'individual meals':24, 'cereals':25, 'tortillas':26, 'spaghetti sauce':27, 'ketchup':28, 'sandwich loaves':29, 'poultry':30, 'bagels':31, 'eggs':32, 'juice':33, 'pasta':34, 'paper towels':35, 'coffee/tea':36, 'fruits':37, 'sugar':38}

2.关联规则列表中的商品必须是转换后的数字。

注意:数据文件为.csv文件,字段名分别为:dateidgood

测试说明

平台会对你编写的代码进行测试,判题程序将自动将数字转换为商品名称:

测试输入:{'min_support':0.2,'min_conf':0.7} 预期输出:

 
 
  1. eggs->vegetables:0.8378378378378379
  2. juice->vegetables:0.780885780885781
  3. cereals->vegetables:0.7849223946784922
  4. individual meals->vegetables:0.7593457943925235
  5. laundry detergent->vegetables:0.8167053364269142
  6. butter->vegetables:0.7708830548926013
  7. ice cream->vegetables:0.7599118942731278
  8. yogurt->vegetables:0.8310502283105023                             
代码:
from utils import generateRules
import pandas as pd

def T(x):
    m = {'yogurt': 1, 'pork': 2, 'sandwich bags': 3, 'lunch meat': 4, 'all- purpose': 5, 'flour': 6, 'soda': 7, 'butter': 8,
     'vegetables': 9, 'beef': 10, 'aluminum foil': 11, 'dinner rolls': 12, 'shampoo': 13, 'mixes': 14, 'soap': 15,
     'laundry detergent': 16, 'ice cream': 17, 'toilet paper': 18, 'hand soap': 19, 'waffles': 20, 'cheeses': 21,
     'milk': 22, 'dishwashing liquid/detergent': 23, 'individual meals': 24, 'cereals': 25, 'tortillas': 26,
     'spaghetti sauce': 27, 'ketchup': 28, 'sandwich loaves': 29, 'poultry': 30, 'bagels': 31, 'eggs': 32, 'juice': 33,
     'pasta': 34, 'paper towels': 35, 'coffee/tea': 36, 'fruits': 37, 'sugar': 38}
    return m[x]

def aprior_data(data):
    basket = []
    for id in data['id'].unique():
        a = [data['good'][i] for i, j in enumerate(data['id']) if j == id]
        basket.append(a)
    return basket

def genRules(data_path, min_support, min_conf):
    # *********Begin*********#
    data1 = pd.read_csv(data_path)
    data1['good'] = data1['good'].apply(T)
    data2 = aprior_data(data1)
    rult = generateRules(data2, min_support, min_conf)
    return rult
#*********End*********#

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1648898.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeetCode-DFS-树类-简单难度

关于二叉树的相关深度优先遍历类题目,重点在于掌握最基本的前中后序遍历,大多数题目都在围绕这套逻辑,找到处理节点的时机,以及停止遍历的条件,即可顺利完成。 二叉树前中后序遍历模板 所谓前中后序,指的…

好久不见,回来看看七年前的你

今天在网上搜东西,突然想到之前在网上记录的点滴成长,回来看看~ 来看看那些年走过的路,小伙还挺真实,有些想法~ 那时,一起在网上记录文字的人,也都慢慢失去了联系~ 确实,深有感触,…

【论文阅读笔记】MAS-SAM: Segment Any Marine Animal with Aggregated Features

1.论文介绍 MAS-SAM: Segment Any Marine Animal with Aggregated Features MAS-SAM:利用聚合特征分割任何海洋动物 Paper Code(空的) 2.摘要 最近,分割任何模型(SAM)在生成高质量的对象掩模和实现零拍摄图像分割方面表现出卓越…

超疏水TiO₂纳米纤维网膜的良好性能

超疏水TiO₂纳米纤维网膜是一种具有特殊性能的材料,它结合了TiO₂的光催化性能和超疏水表面的自清洁、防腐、防污等特性。这种材料在防水、自清洁、油水分离等领域具有广阔的应用前景。 制备超疏水TiO₂纳米纤维网膜的过程中,通过精确控制纺丝溶液的成分…

BFS Ekoparty 2022 -- Linux Kernel Exploitation Challenge

前言 昨天一个师傅给了我一道 linux kernel pwn 题目,然后我看了感觉非常有意思,题目也不算难(在看了作者的提示下),所以就花时间做了做,在这里简单记录一下。这个题是 BFS Lab 2022 年的一道招聘题&#…

【优选算法】——Leetcode——202—— 快乐数

目录 1.题目 2. 题⽬分析: 3.简单证明: 4. 解法(快慢指针): 算法思路: 补充知识:如何求⼀个数n每个位置上的数字的平⽅和。 总结概括 5.代码实现 1.C语言 2.C 1.题目 202. 快乐数 编写一个算法来…

国家电网某地电力公司网络硬件综合监控运维项目

国家电网某地电力公司是国家电网有限公司的子公司,负责当地电网规划、建设、运营和供电服务,下属多家地市供电企业和检修公司、信息通信公司等业务支撑实施机构。 项目现状 随着公司信息化建设加速,其信息内网中存在大量物理服务器、存储设备…

我独自升级崛起在哪下载 我独自升级崛起客户端下载教程

定于5月8日全球盛放的《我独自升级:崛起》——这一激动人心的动作角色扮演游戏巨作,汲取了同名动漫及网络漫画的精髓,誓将以其无与伦比的魅力,引领玩家迈入一个探索深远、规模宏大的奇幻之旅。游戏构筑在一个独一无二的网络武侠世…

英语学习笔记3——Sorry, sir.

Sorry, sir. 对不起,先生。 词汇 Vocabulary umbrella n. 伞,保护伞 注意读音 [ʌm’brelə] 英国人离不开雨伞。 please 请 特殊用法:让路(升调)      用餐礼仪(平调)      求求你…

【Toritoise SVN】SVN 怎么忽略文件夹下的所有文件但是不忽略文件夹本身

比如:忽略 Assets\StreamingAssets\LocalAsset文件夹下的所有文件但是不忽略LocalAsset这个文件夹 在TortoiseSVN中,你可以通过以下步骤来修改文件夹的svn:ignore属性: 打开Windows资源管理器,导航到你的工作副本中的Assets\Stre…

鸿蒙内核源码分析(互斥锁篇) | 互斥锁比自旋锁丰满多了

内核中哪些地方会用到互斥锁?看图: 图中是内核有关模块对互斥锁初始化,有文件,有内存,用消息队列等等,使用面非常的广.其实在给内核源码加注的过程中,会看到大量的自旋锁和互斥锁,它们的存在有序的保证了内核和应用程序的正常运行.是非常基础和重要的功能. 概述 自旋锁 和…

HIVE函数的基本使用

HIVE函数的基本使用 1.查看所有支持的函数 共289个 1)SHOW FUNCTIONS 查看所有支持的函数 共289个 2)SHOW FUNCTIONS LIKE "**" 模糊查询函数名 3)DESC FUNCTION 函数名 可以查看函数的具体使用方法 show functions; show functions like "*c…

【Python爬虫实战入门】:全球天气信息爬取

文章目录 一、爬取需求二、所需第三方库2.1 简介 三、实战案例四、完整代码 一、爬取需求 目标网站:http://www.weather.com.cn/textFC/hb.shtml 需求:爬取全国的天气(获取城市以及最低气温) 目标url:http://www.weath…

双热点的王炸组合!损失函数+Attention,精度与速度上实现SOTA!

损失函数注意力机制在深度学习领域是一个热门研究方向,它可以提高模型的性能和泛化能力,帮助我们构建更加精确且高效的模型。 具体来说: 通过结合注意力机制的聚焦能力和损失函数的优化指导,模型能够更精确地捕捉数据中的关键信息…

Vue3基础笔记(4)组件

目录 一.模版引用 二.组件组成 1.引入组件 2.注入组件 3.显示组件 三.组件嵌套关系 四.组件注册方式 五.组件传递数据 六.组件事件 一.模版引用 虽然Vue的声明性渲染模型为你抽象了大部分对DOM的直接操作,但在某些情况下,我们仍然需要直接访问底…

一个新细节,Go 1.17 将允许切片转换为数组指针!

在 Go 语言中,一个切片(slice)包含了对其支持数组的引用,无论这个数组是作为一个独立的变量存在于某个地方,还是仅仅是一个为支持分片而分配的匿名数组。 其切片基本结构都如下: // runtime/slice.go typ…

windows安装ElasticSearch以及踩坑

1.下载 elasticsearch地址:Past Releases of Elastic Stack Software | Elastichttps://www.elastic.co/cn/downloads/past-releases#elasticsearch IK分析器地址:infinilabs/analysis-ik: 🚌 The IK Analysis plugin integrates Lucene IK…

学习R语言第五天

文章目录 语法学习创建数据的方式绘制图形的方式图形添加颜色如何操作数据的方式数据进行验算的判断加付值的方式修改变量名称的方式判断是否存在缺失值在计算的方式忽略缺失值通过函数的方式忽略缺失值日期处理的方式字符串转化成日期的方式格式化数据框中数据返回当前的日期的…

【重磅开源】MapleBoot生成代码工具介绍(单表表格功能)

基于SpringBootVue3开发的轻量级快速开发脚手架 🍁项目简介 一个通用的前、后端项目模板 一个快速开发管理系统的项目 一个可以生成SpringBootVue代码的项目 一个持续迭代的开源项目 一个程序员的心血合集 度过严寒,终有春日&#xff…

【深度学习实战(33)】训练之model.train()和model.eval()

一、model.train(),model.eval()作用? model.train() 和 model.eval() 是 PyTorch 中的两个方法,用于设置模型的训练模式和评估模式。 model.train() 方法将模型设置为训练模式。在训练模式下,模型会启用 dropout 和 batch norm…