问题一:开始的子区间是怎么分的?
M = (L+R)/2,左子区间为[L,M],右子区间为[M+1,R]
问题二:如何进行区间统计?
假设这13个数为1,2,3,4,1,2,3,4,1,2,3,4,1. 在区间之后标上该区间的数字之和:
如果要计算[2,12]的和,按照之前的算法:
[2,12]=[2] + [3,4] + [5,7] + [8,10] + [11,12]
29 = 2 + 7 + 6 + 7 + 7
计算5个数的和就可以算出[2,12]的值。
问题三:如何进行点修改?
假设把A[6]+=7 ,看看哪些区间需要修改?[6],[5,6],[5,7],[1,7],[1,13]这些区间全部都需要+7.其余所有区间都不用动。
于是,这颗线段树中,点修改最多修改5个线段树元素(每层一个)。
下图中,修改后的元素用蓝色表示。
代码实现
(0)定义:
// arr[]为原序列的信息从0开始,但在arr里是从1开始的
// sum[]模拟线段树维护区间和
// lazy[]为累加和懒惰标记
// change[]为更新的值
// update[]为更新慵懒标记
private int MAXN;
private int[] arr;
private int[] sum;
private int[] lazy;
private int[] change;
private boolean[] update;
public SegmentTree(int[] origin) {
MAXN = origin.length + 1;
arr = new int[MAXN]; // arr[0] 不用 从1开始使用
for (int i = 1; i < MAXN; i++) {
arr[i] = origin[i - 1];
}
sum = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围的累加和信息
lazy = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围沒有往下傳遞的纍加任務
change = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围有没有更新操作的任务
update = new boolean[MAXN << 2]; // 用来支持脑补概念中,某一个范围更新任务,更新成了什么
}
思考为啥数组空间是4倍
当四个数(N)的时候是7 相当于2N
如果多一个数,可能下面最多加8个(最坏情况下也是2N)
(1)建树:
private void pushUp(int rt) {
sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}
// 在初始化阶段,先把sum数组,填好
// 在arr[l~r]范围上,去build,1~N,
// rt : 这个范围在sum中的下标
public void build(int l, int r, int rt) {
if (l == r) {
sum[rt] = arr[l];
return;
}
int mid = (l + r) >> 1;
build(l, mid, rt << 1);
build(mid + 1, r, rt << 1 | 1);
pushUp(rt);
}
(2)添加:
// L~R, C 任务! C是添加的值
// rt,l~r
public void add(int L, int R, int C, int l, int r, int rt) {
// 任务如果把此时的范围全包了!
if (L <= l && r <= R) {
sum[rt] += C * (r - l + 1);
lazy[rt] += C;
return;
}
// 任务没有把你全包!
// l r mid = (l+r)/2
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
// L~R
if (L <= mid) { //当范围是1-500 mid为250 然后要求3-874范围里add+4,那么3<=250,那么左边还要继续递归下去
add(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
add(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
// 之前的,所有懒增加,和懒更新,从父范围,发给左右两个子范围
// 分发策略是什么
// ln表示左子树元素结点个数,rn表示右子树结点个数
private void pushDown(int rt, int ln, int rn) {
if (lazy[rt] != 0) {
lazy[rt << 1] += lazy[rt];
lazy[rt << 1 | 1] += lazy[rt];
sum[rt << 1] += lazy[rt] * ln;
sum[rt << 1 | 1] += lazy[rt] * rn;
lazy[rt] = 0;
}
}
(2)更新:
// L~R 所有的值变成C
// l~r rt
public void update(int L, int R, int C, int l, int r, int rt) {
if (L <= l && r <= R) {
update[rt] = true;
change[rt] = C;
sum[rt] = C * (r - l + 1);
lazy[rt] = 0;
return;
}
// 当前任务躲不掉,无法懒更新,要往下发
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
if (L <= mid) {
update(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
update(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
update[rt << 1] = true;
update[rt << 1 | 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 | 1] = change[rt];
lazy[rt << 1] = 0;
lazy[rt << 1 | 1] = 0;
sum[rt << 1] = change[rt] * ln;
sum[rt << 1 | 1] = change[rt] * rn;
update[rt] = false;
}
if (lazy[rt] != 0) {
lazy[rt << 1] += lazy[rt];
sum[rt << 1] += lazy[rt] * ln;
lazy[rt << 1 | 1] += lazy[rt];
sum[rt << 1 | 1] += lazy[rt] * rn;
lazy[rt] = 0;
}
}
(2)查询:
// 1~6 累加和是多少? 1~8 rt
public long query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
long ans = 0;
if (L <= mid) {
ans += query(L, R, l, mid, rt << 1);
}
if (R > mid) {
ans += query(L, R, mid + 1, r, rt << 1 | 1);
}
return ans;
}
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
update[rt << 1] = true;
update[rt << 1 | 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 | 1] = change[rt];
lazy[rt << 1] = 0;
lazy[rt << 1 | 1] = 0;
sum[rt << 1] = change[rt] * ln;
sum[rt << 1 | 1] = change[rt] * rn;
update[rt] = false;
}
if (lazy[rt] != 0) {
lazy[rt << 1] += lazy[rt];
sum[rt << 1] += lazy[rt] * ln;
lazy[rt << 1 | 1] += lazy[rt];
sum[rt << 1 | 1] += lazy[rt] * rn;
lazy[rt] = 0;
}
}
最终测试代码
public class SegmentTree {
public static class SegmentTree {
// arr[]为原序列的信息从0开始,但在arr里是从1开始的
// sum[]模拟线段树维护区间和
// lazy[]为累加和懒惰标记
// change[]为更新的值
// update[]为更新慵懒标记
private int MAXN;
private int[] arr;
private int[] sum;
private int[] lazy;
private int[] change;
private boolean[] update;
public SegmentTree(int[] origin) {
MAXN = origin.length + 1;
arr = new int[MAXN]; // arr[0] 不用 从1开始使用
for (int i = 1; i < MAXN; i++) {
arr[i] = origin[i - 1];
}
sum = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围的累加和信息
lazy = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围沒有往下傳遞的纍加任務
change = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围有没有更新操作的任务
update = new boolean[MAXN << 2]; // 用来支持脑补概念中,某一个范围更新任务,更新成了什么
}
private void pushUp(int rt) {
sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}
// 之前的,所有懒增加,和懒更新,从父范围,发给左右两个子范围
// 分发策略是什么
// ln表示左子树元素结点个数,rn表示右子树结点个数
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
update[rt << 1] = true;
update[rt << 1 | 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 | 1] = change[rt];
lazy[rt << 1] = 0;
lazy[rt << 1 | 1] = 0;
sum[rt << 1] = change[rt] * ln;
sum[rt << 1 | 1] = change[rt] * rn;
update[rt] = false;
}
if (lazy[rt] != 0) {
lazy[rt << 1] += lazy[rt];
sum[rt << 1] += lazy[rt] * ln;
lazy[rt << 1 | 1] += lazy[rt];
sum[rt << 1 | 1] += lazy[rt] * rn;
lazy[rt] = 0;
}
}
// 在初始化阶段,先把sum数组,填好
// 在arr[l~r]范围上,去build,1~N,
// rt : 这个范围在sum中的下标
public void build(int l, int r, int rt) {
if (l == r) {
sum[rt] = arr[l];
return;
}
int mid = (l + r) >> 1;
build(l, mid, rt << 1);
build(mid + 1, r, rt << 1 | 1);
pushUp(rt);
}
// L~R 所有的值变成C
// l~r rt
public void update(int L, int R, int C, int l, int r, int rt) {
if (L <= l && r <= R) {
update[rt] = true;
change[rt] = C;
sum[rt] = C * (r - l + 1);
lazy[rt] = 0;
return;
}
// 当前任务躲不掉,无法懒更新,要往下发
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
if (L <= mid) {
update(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
update(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
// L~R, C 任务!
// rt,l~r
public void add(int L, int R, int C, int l, int r, int rt) {
// 任务如果把此时的范围全包了!
if (L <= l && r <= R) {
sum[rt] += C * (r - l + 1);
lazy[rt] += C;
return;
}
// 任务没有把你全包!
// l r mid = (l+r)/2
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
// L~R
if (L <= mid) {
add(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
add(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
// 1~6 累加和是多少? 1~8 rt
public long query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
long ans = 0;
if (L <= mid) {
ans += query(L, R, l, mid, rt << 1);
}
if (R > mid) {
ans += query(L, R, mid + 1, r, rt << 1 | 1);
}
return ans;
}
}
public static class Right {
public int[] arr;
public Right(int[] origin) {
arr = new int[origin.length + 1];
for (int i = 0; i < origin.length; i++) {
arr[i + 1] = origin[i];
}
}
public void update(int L, int R, int C) {
for (int i = L; i <= R; i++) {
arr[i] = C;
}
}
public void add(int L, int R, int C) {
for (int i = L; i <= R; i++) {
arr[i] += C;
}
}
public long query(int L, int R) {
long ans = 0;
for (int i = L; i <= R; i++) {
ans += arr[i];
}
return ans;
}
}
public static int[] genarateRandomArray(int len, int max) {
int size = (int) (Math.random() * len) + 1;
int[] origin = new int[size];
for (int i = 0; i < size; i++) {
origin[i] = (int) (Math.random() * max) - (int) (Math.random() * max);
}
return origin;
}
public static boolean test() {
int len = 100;
int max = 1000;
int testTimes = 5000;
int addOrUpdateTimes = 1000;
int queryTimes = 500;
for (int i = 0; i < testTimes; i++) {
int[] origin = genarateRandomArray(len, max);
SegmentTree seg = new SegmentTree(origin);
int S = 1;
int N = origin.length;
int root = 1;
seg.build(S, N, root);
Right rig = new Right(origin);
for (int j = 0; j < addOrUpdateTimes; j++) {
int num1 = (int) (Math.random() * N) + 1;
int num2 = (int) (Math.random() * N) + 1;
int L = Math.min(num1, num2);
int R = Math.max(num1, num2);
int C = (int) (Math.random() * max) - (int) (Math.random() * max);
if (Math.random() < 0.5) {
seg.add(L, R, C, S, N, root);
rig.add(L, R, C);
} else {
seg.update(L, R, C, S, N, root);
rig.update(L, R, C);
}
}
for (int k = 0; k < queryTimes; k++) {
int num1 = (int) (Math.random() * N) + 1;
int num2 = (int) (Math.random() * N) + 1;
int L = Math.min(num1, num2);
int R = Math.max(num1, num2);
long ans1 = seg.query(L, R, S, N, root);
long ans2 = rig.query(L, R);
if (ans1 != ans2) {
return false;
}
}
}
return true;
}
public static void main(String[] args) {
int[] origin = { 2, 1, 1, 2, 3, 4, 5 };
SegmentTree seg = new SegmentTree(origin);
int S = 1; // 整个区间的开始位置,规定从1开始,不从0开始 -> 固定
int N = origin.length; // 整个区间的结束位置,规定能到N,不是N-1 -> 固定
int root = 1; // 整棵树的头节点位置,规定是1,不是0 -> 固定
int L = 2; // 操作区间的开始位置 -> 可变
int R = 5; // 操作区间的结束位置 -> 可变
int C = 4; // 要加的数字或者要更新的数字 -> 可变
// 区间生成,必须在[S,N]整个范围上build
seg.build(S, N, root);
// 区间修改,可以改变L、R和C的值,其他值不可改变
seg.add(L, R, C, S, N, root);
// 区间更新,可以改变L、R和C的值,其他值不可改变
seg.update(L, R, C, S, N, root);
// 区间查询,可以改变L和R的值,其他值不可改变
long sum = seg.query(L, R, S, N, root);
System.out.println(sum);
System.out.println("对数器测试开始...");
System.out.println("测试结果 : " + (test() ? "通过" : "未通过"));
}
}