Redis系列之key过期策略介绍

news2024/12/23 11:03:06

为什么要有过期策略?

Redis是一个内存型的数据库,数据是放在内存里的,但是内存也是有大小的,所以,需要配置redis占用的最大内存,主要通过maxmemory配置

maxmomory <bytes>  # redis占用的最大内存

官网:https://redis.io/docs/manual/eviction/ 介绍

For example, to configure a memory limit of 100 megabytes, you can use the following directive inside the redis.conf file:

maxmomory 100mb

Setting maxmemory to zero results into no memory limits. This is the default behavior for 64 bit systems, while 32 bit systems use an implicit memory limit of 3GB.

翻译一下,大致意思是如果配置为0,那么模式最大内存大小就是电脑的内存,如果是32bit隐式大小就是3G。

如果我们不淘汰过期的key数据,堆积到一定程度,就会占满内存,满了,就不能再放数据,所以我们需要key过期机制,去删除过期的数据,保证redis的高可用。

什么是Redis key过期策略?

我们知道redis有一个特性,redis中的数据,我们都是可以设置过期时间的,如果时间到了,这个数据就会从Redis中移除。那么redis key的过期策略就是我们怎么将redis中的过期数据移除。

key的惰性过期策略

惰性过期,就是在redis里面,在每次访问操作key的时候,才判断这个key是否过期了,如果过期了就删除数据。redis中主要是通过db.c的expireIfNeeded方法去判断,调用到相关命令时才会去调用,平时不会去判断是否过期

查看一下源码,expireIfNeeded方法,在db.c源码,基于Redis6.0

int expireIfNeeded(redisDb *db, robj *key) {
    if (!keyIsExpired(db,key)) return 0;

    /* If we are running in the context of a slave, instead of
     * evicting the expired key from the database, we return ASAP:
     * the slave key expiration is controlled by the master that will
     * send us synthesized DEL operations for expired keys.
     *
     * Still we try to return the right information to the caller,
     * that is, 0 if we think the key should be still valid, 1 if
     * we think the key is expired at this time. */
    // 如果有配置masterhost,说明是从节点,那么不执行key删除操作
    if (server.masterhost != NULL) return 1;

    /* Delete the key */
    server.stat_expiredkeys++;
    propagateExpire(db,key,server.lazyfree_lazy_expire);
    notifyKeyspaceEvent(NOTIFY_EXPIRED,
        "expired",key,db->id);
    // 判断lazyfree_lazy_expire是否开启,开启执行异步删除,不开启执行同步删除,4.0之后新增的功能,默认是关闭
    int retval = server.lazyfree_lazy_expire ? dbAsyncDelete(db,key) :
                                               dbSyncDelete(db,key);
    if (retval) signalModifiedKey(NULL,db,key);
    return retval;
}

惰性删除策略可以节省CPU资源,因为只需要访问key的时候才去判断是否过期,所以平时是没啥CPU损耗的,但是如果没有再次访问,改过期的key就一直堆积在内存里面,不会被清除,从而占用大量内存空间,所以我们需要另外一种策略来配合使用,解决内存占用问题,就是下面说的key定时过期策略。

key的定期过期策略

Redis中也提供了定期清除过期key的策略,在redis源码里的server.c,里面有个serverCron方法,这个方法除了做Rehash以外,还会做很多其他的操作,比如

  1. 清理数据库中的过期键值对
  2. 关闭和清理连接失效的客户端
  3. 尝试进行持久化操作
  4. 更新服务器的各类统计信息(时间、内存占用、数据库占用情况等)

Redis多久去清除过期的数据,执行频率根据redis.conf里的配置hz

在这里插入图片描述

然后实现流程大概是咋样的?具体实现流程如下:

  1. serverCron方法去执行定时清理,执行频率redis.confhz参数配置,默认是10,也就是1s执行10次,100ms执行1次

  2. 执行清理的时候,去扫描所有设置了过期时间的key,不会去扫描所有的key

  3. 根据桶的维度去扫描key,直到扫到20个key(可配)且最多取400个桶。假如第一个桶是15个key,没有达到20个key,所以会继续扫描第二个桶,第二个桶20个key,由于是以桶为维度进行扫描的,第二个桶会被全部扫描,所以总共扫描了35个key

  4. 找到扫描的key里面过期的key,进行删除操作

  5. 判断扫描的过期数据跟扫描总数的比例是否超过10%,是,继续执行3、4步;否,删除完成。

执行过程,画一个流程图:

在这里插入图片描述

查看源码,验证一下,在redis源码里的server.c有一个serverCron方法,里面有个databasesCron函数

/* Handle background operations on Redis databases. */
databasesCron();

同个类里,查看databasesCron函数

void databasesCron(void) {
    /* Expire keys by random sampling. Not required for slaves
     * as master will synthesize DELs for us. */
    if (server.active_expire_enabled) {
        if (iAmMaster()) { // 是否主服务器
            activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW);
        } else { // 从服务器
            expireSlaveKeys();
        }
    }

    /* Defrag keys gradually. */
    activeDefragCycle();

    /* Perform hash tables rehashing if needed, but only if there are no
     * other processes saving the DB on disk. Otherwise rehashing is bad
     * as will cause a lot of copy-on-write of memory pages. */
    if (!hasActiveChildProcess()) {
        /* We use global counters so if we stop the computation at a given
         * DB we'll be able to start from the successive in the next
         * cron loop iteration. */
        static unsigned int resize_db = 0;
        static unsigned int rehash_db = 0;
        int dbs_per_call = CRON_DBS_PER_CALL;
        int j;

        /* Don't test more DBs than we have. */
        if (dbs_per_call > server.dbnum) dbs_per_call = server.dbnum;

        /* Resize */
        for (j = 0; j < dbs_per_call; j++) {
            tryResizeHashTables(resize_db % server.dbnum);
            resize_db++;
        }

        /* Rehash */
        if (server.activerehashing) {
            for (j = 0; j < dbs_per_call; j++) {
                int work_done = incrementallyRehash(rehash_db);
                if (work_done) {
                    /* If the function did some work, stop here, we'll do
                     * more at the next cron loop. */
                    break;
                } else {
                    /* If this db didn't need rehash, we'll try the next one. */
                    rehash_db++;
                    rehash_db %= server.dbnum;
                }
            }
        }
    }
}

查看activeExpireCycle方法,在expire.c

void activeExpireCycle(int type) {
    /* Adjust the running parameters according to the configured expire
     * effort. The default effort is 1, and the maximum configurable effort
     * is 10. */
    unsigned long
    effort = server.active_expire_effort-1, /* Rescale from 0 to 9. */
    config_keys_per_loop = ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP +
                           ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP/4*effort,
    config_cycle_fast_duration = ACTIVE_EXPIRE_CYCLE_FAST_DURATION +
                                 ACTIVE_EXPIRE_CYCLE_FAST_DURATION/4*effort,
    config_cycle_slow_time_perc = ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC +
                                  2*effort,
    config_cycle_acceptable_stale = ACTIVE_EXPIRE_CYCLE_ACCEPTABLE_STALE-
                                    effort;

    /* This function has some global state in order to continue the work
     * incrementally across calls. */
    static unsigned int current_db = 0; /* Last DB tested. */
    static int timelimit_exit = 0;      /* Time limit hit in previous call? */
    static long long last_fast_cycle = 0; /* When last fast cycle ran. */

    int j, iteration = 0;
    int dbs_per_call = CRON_DBS_PER_CALL;
    long long start = ustime(), timelimit, elapsed;

    /* When clients are paused the dataset should be static not just from the
     * POV of clients not being able to write, but also from the POV of
     * expires and evictions of keys not being performed. */
    if (clientsArePaused()) return;

    if (type == ACTIVE_EXPIRE_CYCLE_FAST) {
        /* Don't start a fast cycle if the previous cycle did not exit
         * for time limit, unless the percentage of estimated stale keys is
         * too high. Also never repeat a fast cycle for the same period
         * as the fast cycle total duration itself. */
        if (!timelimit_exit &&
            server.stat_expired_stale_perc < config_cycle_acceptable_stale)
            return;

        if (start < last_fast_cycle + (long long)config_cycle_fast_duration*2)
            return;

        last_fast_cycle = start;
    }

    /* We usually should test CRON_DBS_PER_CALL per iteration, with
     * two exceptions:
     *
     * 1) Don't test more DBs than we have.
     * 2) If last time we hit the time limit, we want to scan all DBs
     * in this iteration, as there is work to do in some DB and we don't want
     * expired keys to use memory for too much time. */
    if (dbs_per_call > server.dbnum || timelimit_exit)
        dbs_per_call = server.dbnum;

    /* We can use at max 'config_cycle_slow_time_perc' percentage of CPU
     * time per iteration. Since this function gets called with a frequency of
     * server.hz times per second, the following is the max amount of
     * microseconds we can spend in this function. */
    timelimit = config_cycle_slow_time_perc*1000000/server.hz/100;
    timelimit_exit = 0;
    if (timelimit <= 0) timelimit = 1;

    if (type == ACTIVE_EXPIRE_CYCLE_FAST)
        timelimit = config_cycle_fast_duration; /* in microseconds. */

    /* Accumulate some global stats as we expire keys, to have some idea
     * about the number of keys that are already logically expired, but still
     * existing inside the database. */
    long total_sampled = 0;
    long total_expired = 0;

    for (j = 0; j < dbs_per_call && timelimit_exit == 0; j++) {
        /* Expired and checked in a single loop. */
        unsigned long expired, sampled;

        redisDb *db = server.db+(current_db % server.dbnum);

        /* Increment the DB now so we are sure if we run out of time
         * in the current DB we'll restart from the next. This allows to
         * distribute the time evenly across DBs. */
        current_db++;

        /* Continue to expire if at the end of the cycle there are still
         * a big percentage of keys to expire, compared to the number of keys
         * we scanned. The percentage, stored in config_cycle_acceptable_stale
         * is not fixed, but depends on the Redis configured "expire effort". */
        do {
            unsigned long num, slots;
            long long now, ttl_sum;
            int ttl_samples;
            iteration++;

            /* If there is nothing to expire try next DB ASAP. */
            if ((num = dictSize(db->expires)) == 0) {
                db->avg_ttl = 0;
                break;
            }
            slots = dictSlots(db->expires);
            now = mstime();

            /* When there are less than 1% filled slots, sampling the key
             * space is expensive, so stop here waiting for better times...
             * The dictionary will be resized asap. */
            if (num && slots > DICT_HT_INITIAL_SIZE &&
                (num*100/slots < 1)) break;

            /* The main collection cycle. Sample random keys among keys
             * with an expire set, checking for expired ones. */
            expired = 0;
            sampled = 0;
            ttl_sum = 0;
            ttl_samples = 0;
			// 最多那20个
            if (num > config_keys_per_loop)
                num = config_keys_per_loop;

            /* Here we access the low level representation of the hash table
             * for speed concerns: this makes this code coupled with dict.c,
             * but it hardly changed in ten years.
             *
             * Note that certain places of the hash table may be empty,
             * so we want also a stop condition about the number of
             * buckets that we scanned. However scanning for free buckets
             * is very fast: we are in the cache line scanning a sequential
             * array of NULL pointers, so we can scan a lot more buckets
             * than keys in the same time. */
            long max_buckets = num*20;
            long checked_buckets = 0;
			// 如果拿到的key数量大于20 或者 checked_buckets大于400,跳出循环
            while (sampled < num && checked_buckets < max_buckets) {
                for (int table = 0; table < 2; table++) {
                    if (table == 1 && !dictIsRehashing(db->expires)) break;

                    unsigned long idx = db->expires_cursor;
                    idx &= db->expires->ht[table].sizemask;
                    // 根据index拿到hash桶
                    dictEntry *de = db->expires->ht[table].table[idx];
                    long long ttl;

                    /* Scan the current bucket of the current table. */
                    checked_buckets++;
                    // 循环hash桶里的key
                    while(de) {
                        /* Get the next entry now since this entry may get
                         * deleted. */
                        dictEntry *e = de;
                        de = de->next;

                        ttl = dictGetSignedIntegerVal(e)-now;
                        if (activeExpireCycleTryExpire(db,e,now)) expired++;
                        if (ttl > 0) {
                            /* We want the average TTL of keys yet
                             * not expired. */
                            ttl_sum += ttl;
                            ttl_samples++;
                        }
                        sampled++;
                    }
                }
                db->expires_cursor++;
            }
            total_expired += expired;
            total_sampled += sampled;

            /* Update the average TTL stats for this database. */
            if (ttl_samples) {
                long long avg_ttl = ttl_sum/ttl_samples;

                /* Do a simple running average with a few samples.
                 * We just use the current estimate with a weight of 2%
                 * and the previous estimate with a weight of 98%. */
                if (db->avg_ttl == 0) db->avg_ttl = avg_ttl;
                db->avg_ttl = (db->avg_ttl/50)*49 + (avg_ttl/50);
            }

            /* We can't block forever here even if there are many keys to
             * expire. So after a given amount of milliseconds return to the
             * caller waiting for the other active expire cycle. */
            if ((iteration & 0xf) == 0) { /* check once every 16 iterations. */
                elapsed = ustime()-start;
                if (elapsed > timelimit) {
                    timelimit_exit = 1;
                    server.stat_expired_time_cap_reached_count++;
                    break;
                }
            }
            /* We don't repeat the cycle for the current database if there are
             * an acceptable amount of stale keys (logically expired but yet
             * not reclaimed). */
             // 比例超过10%,expired过期的key数量,sampled总的扫描数量
        } while (sampled == 0 ||
                 (expired*100/sampled) > config_cycle_acceptable_stale);
    }

    elapsed = ustime()-start;
    server.stat_expire_cycle_time_used += elapsed;
    latencyAddSampleIfNeeded("expire-cycle",elapsed/1000);

    /* Update our estimate of keys existing but yet to be expired.
     * Running average with this sample accounting for 5%. */
    double current_perc;
    if (total_sampled) {
        current_perc = (double)total_expired/total_sampled;
    } else
        current_perc = 0;
    server.stat_expired_stale_perc = (current_perc*0.05)+
                                     (server.stat_expired_stale_perc*0.95);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1648266.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python中一些莫名其妙的异常

目录 一、字符串中空格\xa0二、文件写入为空问题三、Counter对NAN空值的统计问题 一、字符串中空格\xa0 对于文本中的一些空格&#xff0c;原始状态时显示为普通“空格”&#xff08;其实是latin1编码字符&#xff09;&#xff0c;但是经过split()操作后&#xff0c;这些latin…

如何用道氏理论进行炒现货白银的技术分析?

要炒现货白银&#xff0c;就要对白银价格进行技术分析。进行炒白银的技术分析&#xff0c;目的是让投资者通过对白银价格图表的分析&#xff0c;判断白银市场趋势&#xff0c;进而寻找入场交易的机会。 道氏理论不光是一种技术分析的理论&#xff0c;它还被称为技术分析的鼻祖。…

【XR806开发板试用】阻塞式串口发送与接收教程

本文基于wsl2搭建的ubuntu18.04 vscode编辑器 很奇怪啊&#xff0c;找了半天居然没人发串口的教程&#xff0c;于是只能自己试一试了&#xff0c;在此发一个阻塞式的串口发送与接收的教程。并且&#xff0c;感谢.ACE彭洪权大佬在我配置环境遇到几十个报错的时候帮我远程搭建环…

H3C Private VLAN实验

Private VLAN 实验1 实验需求 按照图示配置 IP 地址 在 SW1 上配置 Private VLAN&#xff0c;Primary VLAN 为 Vlan30&#xff0c;Secondary VLAN 为 Vlan10 和 Vlan20 SW2 通过 Vlan100 下行连接 SW1&#xff0c;要求 PC3 和 PC4 都能以 Vlan100 访问 PC5 在 SW1 上配置 …

给网站网页PHP页面设置密码访问代码

将MkEncrypt.php文件上传至你网站根目录下或者同级目录下。 MkEncrypt.php里面添加代码&#xff0c;再将调用代码添加到你需要加密的页进行调用 MkEncrypt(‘123456’);括号里面123456修改成你需要设置的密码。 密码正确才能进去页面&#xff0c;进入后会存下cookies值&…

java接受入参是xml格式参数demo

java接受入参是xml格式参数demo 依赖demo1. xml入参定义2.接口定义3. postman请求4. 结果 注解说明 依赖 pom依赖 jackson-dataformat-xml <dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</…

RCLAMP0854P.TCT ESD抑制器 静电和浪涌保护 应用领域

RCLAMP0854P.TCT 是一款电路保护器件&#xff0c;属于Transient Voltage Suppressor (TVS) 系列产品。它是一种低电容TVS阵列&#xff0c;具有 RailClamp 标志性技术&#xff0c;旨在为电子设备提供高效防护&#xff0c;免受高电压瞬变和静电放电&#xff08;ESD&#xff09;的…

uni-app 超详细教程( 附送250套精选项目源码)

一&#xff0c;uniapp 介绍 &#xff1a; 官方网页 uni-app 是一个使用 Vue.js 开发所有前端应用的框架&#xff0c;开发者编写一套代码&#xff0c;可发布到iOS、Android、Web&#xff08;响应式&#xff09;、以及各种小程序&#xff08;微信/支付宝/百度/头条/飞书/QQ/快手/…

信息泄露中的目录遍历,phpinfo,备份文件下载

一、目录遍历漏洞 1.什么是目录遍历漏洞 指的是在没有授权的情况下读取文件&#xff0c;某些情况下还可对服务器里的文件任意写入 2.目录遍历漏洞成因 网站配置存在缺陷&#xff0c;对输入目录缺少验证&#xff0c;没过滤../之类的目录跳转符&#xff0c;可通过提交目录跳转…

速卖通新卖家测评攻略:从入门到精通

在电商行业中&#xff0c;测评被广泛认为是提升产品转化率和销量的有效手段。对于速卖通的卖家而言&#xff0c;测评的必要性更是显而易见。测评&#xff0c;本质上与国内电商的补单行为相似&#xff0c;是一种通过增加销量来提升产品权重的方法。 特别是在竞争激烈的类目中&a…

【触摸案例-手势解锁案例-按钮高亮 Objective-C语言】

一、我们来说这个self.btns,这个问题啊,为什么不用_btns, 1.我们说,在懒加载里边儿,经常是写下划线啊,_btns,为什么不写,首先啊,这个layoutSubviews:我们第一次,肯定会去执行这个layoutSubviews: 然后呢,去懒加载这个数组, 然后呢,接下来啊,走这一句话, 第一次…

使用 Gitea 进行私有 Git 仓库管理

在本文中&#xff0c;我们将介绍如何使用 Gitea 搭建并管理私有 Git 仓库。Gitea 是一个轻量级的 Git 服务&#xff0c;提供了类似于 GitHub 的功能&#xff0c;适合个人和小团队使用。我们将通过以下步骤来完成搭建和配置 Gitea 服务器。 步骤一&#xff1a;安装 Gitea 首先…

关于Checkmarx、CodeQL和Semgrep的测试结果比较

关于Checkmarx、CodeQL和Semgrep的测试结果比较 随着SAST工具的不断的推陈出新&#xff0c;为了比较一些新的工具是否能够提供更好的扫描结果&#xff0c;针对Checkmarx、CodeQL以及Semgrep几个工具进行了测试评估&#xff0c;具体的评估结果仅供参考。本文列列举了工具的各个方…

SAP生产订单常用状态以及

常用系统状态&#xff1a; 状态 状态 CRTD 已建立 REL 已核发 CNF 已确认 PCNF 已部份确认 DLV 已交货 DLT 删除指示码 LKD 已锁住 TECO 技术完成 GMPS 已发料 关闭 关闭 工单结案前的生产报表分析 路径:后勤系统- 生产- 现场控制- 信息系统-订单信息系…

使用PyQt5设计系统登录界面—了解界面布局

前言&#xff1a;自学的过程中充分认识到网络搜索的重要性&#xff0c;有时候一篇通俗易懂的文章会让我这种入门级的小白更易上手&#xff0c;俗话说“开头难&#xff0c;难开头”&#xff0c;只要开了一个好头就不怕知难而退。 如何安装QT Designer界面设计所需要的环境 1. 如…

服务器数据恢复—ESXi虚拟机中MySQL数据库数据恢复案例

服务器数据恢复环境&#xff1a; 某品牌EVA某型号存储中部署VMware ESXi虚拟化平台&#xff0c;数据盘&#xff08;精简模式&#xff09;快照数据盘&#xff0c;虚拟机中有mysql数据库。 服务器故障&#xff1a; 机房意外断电导致该存储中的一台VMware虚拟机无法启动&#xff0…

网络安全之动态路由入门

动态路由协议有几种&#xff1a;RIP,OSPF,EIGRP,ISIS,BGP 动态路由工作原理&#xff1a; 例如&#xff1a; 若A区域运行的协议与B中的不同&#xff0c;数据从1到4走A区域还是走B区域&#xff0c;则看A,B两区域的优先级&#xff08;priority preference或AD——管理距离&#…

数据流转的艺术:深度解析tee命令的应用技巧

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 数据流转的艺术&#xff1a;深度解析tee命令的应用技巧 前言tee命令简介tee命令的基本用法tee命令的高级功能 前言 在Linux的世界里&#xff0c;有一位不太引人注意但却异常强大的命令&#xff0c;那…

VBA随机取数在Excel中的应用---10以内加法出题及计算得分

VBA随机取数在Excel中的应用---10以内加法出题及阅卷 小学生加减乘除的计算,只要不是应用题,完全可以用VBA随机取数解决,甚至连阅卷都可以用VBA操作。现在写一个最简单的,10以内的加法。 用到两个关键点:随机取数Int(0 + 11 * Rnd())和字典去重(Scripting.Dictionary) …

红黑树(RBTree)认识总结

一、认识红黑树 1.1 什么是红黑树&#xff1f; 红黑树是一种二叉搜索树&#xff0c;与普通搜索树不同的是&#xff0c;在每个节点上增加一个“颜色”变量 —— RED / BLACK 。 通过对各个节点颜色的限制&#xff0c;确保从 根 到 NIL &#xff0c;没有一条路径会比其他路径长出…