阿里实习生:面试阿里其实并没有那么难。

news2024/9/25 1:23:30

愉快的五一假期已经结束了, 又要投入到学习和工作当中了。

今天分享一位同学在阿里的Go后端实习面经详解, 希望对你有帮助。

Go里有哪些数据结构是并发安全的?

并发安全就是程序在并发的情况下执行的结果都是正确的;

Go中数据类型分为两大类:

  • 基本数据类型:字节型、整型、布尔型、浮点型、复数型、字符串

  • 复合数据类型:数组、切片、指针、结构体、字典、通道、函数、接口

字节型、布尔型、整型、浮点型取决于操作系统指令值,在64位的指令集架构中可以由一条机器指令完
成,不存在被细分为更小的操作单位,所以这些类型的并发赋值是安全的,但是这个也跟操作系统的位
数有关,比如int64在32位操作系统中,它的高32位和低32位是分开赋值的,此时是非并发安全的。

复数类型、字符串、结构体、数组,切片,字典,通道,接口, 这些底层都是struct,不同成员的赋值
都不是一起的,所以都不是并发安全的。

Go如何实现一个单例模式?

单例模式的作用是确保无论对象被实例化多少次,全局都只有一个实例存在。根据这一特性,我们可以将其应用到全局唯一性配置、数据库连接对象、文件访问对象等。

饿汉式

饿汉式实现单例模式非常简单,直接看代码:

package singleton
type singleton struct{}
var instance = &singleton{}
func GetSingleton() *singleton {
    return instance
}

singleton 包在被导入时会自动初始化 instance 实例,使用时通过调用 singleton.GetSingleton() 函数即可获得 singleton 这个结构体的单例对象。

这种方式的单例对象是在包加载时立即被创建,所以这个方式叫作饿汉式。与之对应的另一种实现方式叫作懒汉式,懒汉式模式下实例会在第一次被使用时被创建。

需要注意的是,尽管饿汉式实现单例模式的方式简单,但大多数情况下并不推荐。因为如果单例实例化时初始化内容过多,会造成程序加载用时较长。

懒汉式

接下来我们再来看下如何通过懒汉式实现单例模式:

package singleton
type singleton struct{}
var instance *singleton
func GetSingleton() *singleton {
    if instance == nil {
        instance = &singleton{}
    }
    return instance
}

相较于饿汉式的实现,懒汉式将实例化 singleton 结构体部分的代码移到了 GetSingleton() 函数内部。这样能够将对象实例化的步骤延迟到 GetSingleton() 第一次被调用时。

不过通过 instance == nil 的判断来实现单例并不十分可靠,如果有多个 goroutine 同时调用 GetSingleton() 就无法保证并发安全。

  1. sync.map的底层实现
什么是sync.Map

Go 的内建 map 是不支持并发写操作的,原因是 map 写操作不是并发安全的,当你尝试多个 Goroutine 操作同一个 map,会产生报错:fatal error: concurrent map writes。

因此官方另外引入了 sync.Map 来满足并发编程中的应用。

sync.Map 的实现原理可概括为:

  • 通过 read 和 dirty 两个字段将读写分离,读的数据存在只读字段 read 上,将最新写入的数据则存在 dirty 字段上
  • 读取时会先查询 read,不存在再查询 dirty,写入时则只写入 dirty
  • 读取 read 并不需要加锁,而读或写 dirty 都需要加锁
  • 另外有 misses 字段来统计 read 被穿透的次数(被穿透指需要读 dirty 的情况),超过一定次数则将 dirty 数据同步到 read 上
  • 对于删除数据则直接通过标记来延迟删除
数据结构
type Map struct {
    // 加锁作用,保护 dirty 字段
    mu Mutex
    // 只读的数据,实际数据类型为 readOnly
    read atomic.Value
    // 最新写入的数据
    dirty map[interface{}]*entry
    // 计数器,每次需要读 dirty 则 +1
    misses int
}

其中 readOnly 的数据结构为:

type readOnly struct {
    // 内建 map
    m  map[interface{}]*entry
    // 表示 dirty 里存在 read 里没有的 key,通过该字段决定是否加锁读 dirty
    amended bool
}

entry 数据结构则用于存储值的指针:

type entry struct {
    p unsafe.Pointer  // 等同于 *interface{}
}

属性 p 有三种状态:

  • p == nil: 键值已经被删除,且 m.dirty == nil
  • p == expunged: 键值已经被删除,但 m.dirty!=nil 且 m.dirty 不存在该键值(expunged 实际是空接口指针)
  • 除以上情况,则键值对存在,存在于 m.read.m 中,如果 m.dirty!=nil 则也存在于 m.dirty

Map 常用的有以下方法:

  • Load:读取指定 key 返回 value
  • Store: 存储(增或改)key-value
  • Delete: 删除指定 key

channel在什么情况下会panic?

  • 关闭为nil的channel
  • 关闭一个已经关闭的通道
  • 向一个已经关闭的通道写数据
  • 关闭通道导致发送阻塞的协程panic

redis有哪些数据结构,分别常用于哪些场合?

redis的基本数据结构有: 1、String(字符串);2、Hash(哈希);3、List(列表);4、Set(集合);5、zset(有序集合)。

String(字符串)

String 类型是 Redis 中最基本、最常用的数据类型,甚至被很多用户当成 Redis 少数的数据类型去使用。String 类型在 Redis 中是二进制安全(binary safe)的,这意味着 String 值关心二进制的字符串,不关心具体格式,你可以用它存储 json 格式或 JPEG 图片格式的字符串。

应用:

  • 存储一些配置数据:在前后分离式开发中,有些数据虽然存储在数据库,但是更改特别少。比如有个全国地区表。当前端发起请求后,后台如果每次都从关系型数据库读取,会影响网站整体性能。我们可以在名列前茅次访问的时候,将所有地区信息存储到redis字符串中,再次请求,直接从数据库中读取地区的json字符串,返回给前端。
  • 缓存对象:将对象转为json存储,比如商品信息,用户信息。
  • 数据统计:redis整型可以用来记录网站访问量,某个文件的下载量,签到人数、视频访问量等等。(自增自减)
  • 时间内限制请求次数:比如已登录用户请求短信验证码,验证码在5分钟内有效的场景。当用户首次请求了短信接口,将用户id存储到redis 已经发送短信的字符串中,并且设置过期时间为5分钟。当该用户再次请求短信接口,发现已经存在该用户发送短信记录,则不再发送短信。
  • 订单号(全局少数):有时候你需要去生成一个全局少数值的时候可以通过redis生成。关键命令:incrby(原子自增)。
  • 分布式session:当我们用nginx做负载均衡的时候,如果我们每个从服务器上都各自存储自己的session,那么当切换了服务器后,session信息会由于不共享而会丢失,我们不得不考虑第三应用来存储session。
Hash(哈希)

Hash的数据结构我们可以简单理解为java中的 Map,这种结构就特别适合存储对象,上面的String的类型确实也可以存储对象,但每次修改对象中的某一个属性,都要拿出整个json字符串在修改这个属性,之后在重新插入,而hash的接口特点让我们可以只修改该对象的某一个属性。

hash数据类型在存储上述类型的数据时具有比 String 类型更灵活、更快的优势,具体的说,使用 String 类型存储,必然需要转换和解析 json 格式的字符串,即便不需要转换,在内存开销方面,还是 hash 占优势。

应用:

  • Redisson分布式锁:Redisson在实现分布式锁的时候,内部的用的数据就是hash而不是String。因为Redisson为了实现可重入加锁机制。所以在hash中存入了当前线程ID。
  • 购物车列表:以用户id为key,商品id为field,商品数量为value,恰好构成了购物车的3个要素。
  • 缓存对象:hash类型的 (key, field, value) 的结构与对象的(对象id, 属性, 值)的结构相似,也可以用来存储对象。
List(列表)

List类型是按照插入顺序排序的字符串链表,一个列表非常多可以存储2^32-1个元素。我们可以简单理解为就相当于java中的LinkesdList。和数据结构中的普通链表一样,我们可以在其头部(left)和尾部(right)添加新的元素。在插入时,如果该键并不存在,Redis将为该键创建一个新的链表。与此相反,如果链表中所有的元素均被移除,那么该键也将会被从数据库中删除。

应用:

  • 消息队列:lpop和rpush(或者反过来,lpush和rpop)能实现队列的功能。
Set(集合)

Redis 中的 set和Java中的HashSet 有些类似,它内部的键值对是无序的、少数的。它的内部实现相当于一个特殊的字典,字典中所有的value都是一个值 NULL。当集合中最后一个元素被移除之后,数据结构被自动删除,内存被回收。

应用:

  • 抽奖活动:存储某活动中中奖的用户ID ,因为有去重功能,可以保证同一个用户不会中奖两次。
zset(有序集合)

Sorted-Sets中的每一个成员都会有一个分数(score)与之关联,Redis正是通过分数来为集合中的成员进行从小到大的排序。成员是少数的,但是分数(score)却是可以重复的。

应用: 作为有序的,不可重复的列表,可以做一些排行榜相关的场景:

  • 排行榜(商品销量,视频评分,用户游戏分数)
  • 新闻热搜

说下缓存击穿,缓存穿透,缓存雪崩有什么区别?

缓存击穿

大量缓存数据在同一时间过期(失效)或者 Redis 故障宕机时,如果此时有大量的用户请求,都无法在 Redis 中处理,于是全部请求都直接访问数据库,从而导致数据库的压力骤增,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃,这就是缓存雪崩

缓存击穿

我们的业务通常会有几个数据会被频繁地访问,比如秒杀活动,这类被频地访问的数据被称为热点数据。

如果缓存中的某个热点数据过期了,此时大量的请求访问了该热点数据,就无法从缓存中读取,直接访问数据库,数据库很容易就被高并发的请求冲垮,这就是缓存击穿

缓存穿透

当发生缓存雪崩或击穿时,数据库中还是保存了应用要访问的数据,一旦缓存恢复相对应的数据,就可以减轻数据库的压力,而缓存穿透就不一样了。

当用户访问的数据,既不在缓存中,也不在数据库中,导致请求在访问缓存时,发现缓存缺失,再去访问数据库时,发现数据库中也没有要访问的数据,没办法构建缓存数据,来服务后续的请求。那么当有大量这样的请求到来时,数据库的压力骤增,这就是缓存穿透的问题。

主键索引和唯一索引的区别

  • 主键是一种约束,唯一索引是一种索引,两者在本质上是不同的。
  • 主键创建后一定包含一个唯一性索引,唯一性索引并不一定就是主键。
  • 唯一性索引列允许空值,而主键列不允许为空值。
  • 主键可以被其他表引用为外键,而唯一索引不能。
  • 一个表最多只能创建一个主键,但可以创建多个唯一索引。
  • 主键更适合那些不容易更改的唯一标识,如自动递增列、身份证号等。
  • 在RBO模式下,主键的执行计划优先级要高于唯一索引。 两者可以提高查询的速度。

约束主要有:主键约束、外键约束、非空约束、检査约束(bentwen and ,大于、小于、等于、不等于)、唯一约束。

索引为什么使用B+树,而不使用跳表?

B+树是多叉树结构,每个结点都是一个16k的数据页,能存放较多索引信息,所以扇出很高。三层左右就可以存储2kw左右的数据(知道结论就行,想知道原因可以看之前的文章)。也就是说查询一次数据,如果这些数据页都在磁盘里,那么最多需要查询三次磁盘IO。

跳表是链表结构,一条数据一个结点,如果最底层要存放2kw数据,且每次查询都要能达到二分查找的效果,2kw大概在2的24次方左右,所以,跳表大概高度在24层左右。最坏情况下,这24层数据会分散在不同的数据页里,也即是查一次数据会经历24次磁盘IO。

因此存放同样量级的数据,B+树的高度比跳表的要少,如果放在mysql数据库上来说,就是磁盘IO次数更少,因此B+树查询更快。

**而针对写操作,B+树需要拆分合并索引数据页,跳表则独立插入,**并根据随机函数确定层数,没有旋转和维持平衡的开销,因此跳表的写入性能会比B+树要好。

计算机网络的多层模型简要介绍

  • 应用层(Application):为用户的应用程序提供网络服务
  • 表示层(Presentation):将信息表示为一定形式和格式的数据流
  • 会话层(Session):负责通信主机之间会话的建立、管理和拆除,协调通信双方的会话
  • 传输层(Transport):负责通信主机间端到端的连接
  • 网络层(Network):负责将分组从源机送到目的机,包括寻址和最优路径选择等
  • 数据链路层(Data Link):提供可靠的帧传递,实现差错控制、流控等等
  • 物理层(Physical):提供透明的比特流(01流)传递

http2.0相比与http1.1的优化

HTTP2.0(Hypenext TransferProtocol version2)是超文本传输协议的第二版,HTTP2.0相比于HTTP1x,大幅度的提升了web性能,同时向下兼容HTTP1.X协议版
本。

主要核心优势有

1、采用二进制格式传输数据,而非htp1.1文本格式,二进制格式在协议的解析和优化扩展上带来了跟多的优势和可能

2、对消息头采用Hpack进行压缩传输,能够节省消息头占用的网络流量,htp1.1每次请求,都会携带大量冗余的头信息,浪费了很多宽带资源,

3、异步连接多路复用

4、Server Push,服务器端能够更快的把资源推送到客户端。

5、保持与HTTP 1.1语义的向后兼容性也是该版本的一个关键

早日上岸!

我们搞了一个免费的面试真题共享群,互通有无,一起刷题进步。

没准能让你能刷到自己意向公司的最新面试题呢。

感兴趣的朋友们可以加我微信:wangzhongyang1993,备注:面试群。

本文首发在我的同名公众号:王中阳Go,未经授权禁止转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1644784.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Altman确认:神秘Chatbot非GPT-4.5,OpenAI搜索引擎即将上线

🚀 Altman确认:神秘Chatbot非GPT-4.5,OpenAI搜索引擎即将上线 摘要:近日,Sam Altman在哈佛大学的演讲中确认,引发广泛猜测的gpt2-chatbot并非OpenAI即将发布的下一代模型GPT-4.5。与此同时,关于…

llama3 史上最强开源大模型,赶超GTP-4,逼宫OpenAI

2024年4月18日,Meta公司推出了开源大语言模型Llama系列的最新产品—Llama 3,包含了80亿参数的Llama 3 8B和700亿参数的Llama 3 70B两个版本。Meta称其为“迄今为止最强的开源大模型”。 怪兽级性能 LLaMA3 提供了不同参数规模的版本,以适应…

性能问题分析排查思路之机器(4)

前言 本文是性能问题分析排查思路的展开内容之一,主要分为日志1期,机器4期、环境2期共7篇系列文章,本期是第四篇,讲机器(硬件)的内存方面的分析排查方法与最佳实践。 在性能问题分析排查系列的位置如下图…

辐射传输基础理论详解与LST反演方法

地表温度LST(Land Surface Temperature)是区域和全球尺度上陆地表层系统过程的关键参数,它综合了地表与大气的相互作用以及大气和陆地之间能量交换的结果。地表温度作为众多基础学科和应用领域的一个关键参数,能 够提供地表能量平衡状态的时空变化信息&a…

C语言 | Leetcode C语言题解之第70题爬楼梯

题目: 题解: int climbStairs(int n) {double sqrt5 sqrt(5);double fibn pow((1 sqrt5) / 2, n 1) - pow((1 - sqrt5) / 2, n 1);return (int) round(fibn / sqrt5); }

8.11 矢量图层线要素单一符号使用一

文章目录 前言简单线(Simple line)符号的使用QGis中的使用二次开发代码实现 总结 前言 本章介绍矢量图层线要素单一符号中简单线(Simple line)的使用说明:文章中的示例代码均来自开源项目qgis_cpp_api_apps 简单线&a…

C++:map和set类

关联式容器 在初阶阶段,我们已经接触过STL中的部分容器,比如:vector、list、deque、 forward_list(C11)等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面 存储的是元素本身。那什么是关…

政安晨:【Keras机器学习示例演绎】(三十六)—— 用聚合注意力增强信念网络

目录 导言 设置和导入 超参数 加载 CIFAR10 数据集 增强层 卷积干 卷积主干 注意力汇集 Patch convnet 回调 学习率时间表 训练 推理 结论 政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras机器学习实战 希望…

【吊打面试官系列】Java高并发篇 - Java 线程池中 submit() 和 execute()方法有什么区别?

大家好,我是锋哥。今天分享关于 【Java 线程池中 submit() 和 execute()方法有什么区别?】面试题,希望对大家有帮助; Java 线程池中 submit() 和 execute()方法有什么区别? 两个方法都可以向线程池提交任务&#xff0c…

Libcity笔记:原子文件

1 介绍 Libcity中的数据以原子文件的形式存在 2 原子文件类别 对于不同的交通预测任务,可能用到不同的原子文件,同一个数据集不一定包含全部六种原子文件 网格数据需要按照先行后列的顺序遍历OD数据需要按照先起点后终点的顺序遍历 2.1 geo 存储地理…

1-38 流资源类结构

一 简介 1. Java中所说的流资源--IO流 2.为什么学习留资源? --要操作文件中的数据 将数据写入指定的文件 将数据从指定的文件读取 3.分类 -- 四大基流 , 八大子流 (重点) 按照流向分 : 输入流 和输出流 按照操作数据资源的类型划分 字符流 (重点) Reader -- 字符…

前端 | iframe框架标签应用(二)| 外部页面导入

文章目录 📚实现效果📚模块实现解析🐇html🐇css🐇javascript 📚实现效果 点击右上角喇叭,弹出iframe页面框,链接bilibili白噪音视频页面;点击关闭按钮,关闭弹…

[力扣题解]102.二叉树的层序遍历

题目&#xff1a;102. 二叉树的层序遍历 代码 迭代法 class Solution { public:vector<vector<int>> levelOrder(TreeNode* root) {queue<TreeNode*> que;TreeNode* cur;int i, size;vector<vector<int>> result;if(root ! NULL){que.push(ro…

百面算法工程师 | 目标检测网络总结——object detect

目录 5.1 Single Shot MultiBox Detector&#xff08;SSD&#xff09; 5.2 YOLO 5.2.1 v1 5.2.2 v2 5.2.3 v3 5.2.4 v4 5.2.5 v5 【后续出详细面试考点&#xff0c;订阅我的专栏&#xff0c;更新第一时间通知】 已更新&#xff1a; 百面算法工程师 | YOLOv5面试考点原理…

Redis-三主三从高可用集群搭建

正式搭建之前&#xff0c;注意事项&#xff08;坑&#xff09;提前放到最开始&#xff0c;也可以出问题回来看&#xff0c; &#xff08;1&#xff09;第二步中最好将配置文件中的logfile自定义一个目录&#xff0c;以便于在第五步中启动出错的时候迅速定位错误。 &#xff0…

羊毛项目(华为iPhone茅台),讲解抢购渠道与抢购注意事项

薅羊毛天花板&#xff0c;华为iPhone茅台无脑撸&#xff0c;几分钟换几百元(非脚本项目) 网盘自动获取 链接&#xff1a;https://pan.baidu.com/s/1lpzKPim76qettahxvxtjaQ?pwd0b8x 提取码&#xff1a;0b8x

Edge扩展应用程序的上架流程

前言 在软件开发的生命周期中&#xff0c;发布流程是将产品推向市场并交付给用户的关键阶段。它不仅标志着一个项目从开发阶段到用户手中的转变&#xff0c;也是确保软件质量和用户体验的重要环节。那么一个清晰、高效且可重复的发布流程对于任何软件项目的成功至关重要&#…

git/gerrit使用遇到的问题

Push时出现的多个问题及其解决 branch【...】not found 这个错误通常出现在 Git 命令中指定的分支名称中包含特殊字符或者语法错误时。需要确保指定的分支名称是正确的&#xff0c;并且没有任何不支持的字符。 例如&#xff0c;如果分支名称是 feature/branch&#xff0c;应该…

webrtc初步了解

WebRTC搭建点对点实时音视频对话&#xff0c;起始需要保证完成两点&#xff1a; 1.媒体协商&#xff0c;了解彼此支持的媒体格式。参与视频通讯的双方必须先交换SDP信息&#xff0c;交换SDP的过程。 2.网络协商&#xff0c;了解彼此的网络环境&#xff0c;找到一条相互通讯的链…

【NI 国产替代】cDAQ-9178, 8槽USB CompactDAQ机箱,国产数据采集卡控制器进口替代方案

8槽USB CompactDAQ机箱 cDAQ-9178是专为小型便携式传感器测量系统而设计的总线供电CompactDAQ USB机箱。机箱通过即插即用的USB可轻松连接传感器和电气测量。该机箱还可控制C系列I/O模块与外部主机之间的定时、同步和数据传输。机箱可以搭配不同的C系列I/O模块组合&#xff0c…