karpathy Let‘s build GPT

news2024/12/28 4:52:45

1 introduction

按照karpathy的教程,一步步的完成transformer的构建,并在这个过程中,加深对transformer设计的理解。
karpathy推荐在进行网络设计的过程中,同时利用jupyter notebook进行快速测试和python进行主要的网络的构建。

在这里插入图片描述

2 网络实现

2.1 数据的构建

  • 读取text
text = open("input.txt", "r", encoding='utf-8').read()
words = sorted(set(''.join(text)))
vocab_size = len(words)
print(f'vocab_size is: {vocab_size}')
print(''.join(words))
print(text[:1000])

vocab_size is: 65
!$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
First Citizen:
Before we proceed any further, hear me speak.
All:
Speak, speak.
First Citizen:
You are all resolved rather to die than to famish?

  • 将字符转换成数字
stoi = {ch : i for i, ch in enumerate(words)}
itos = {i : ch for i, ch in enumerate(words)}

encode = lambda s: [stoi[ch] for ch in s]
decode = lambda l: ''.join([itos[i] for i in l])
print(encode("hii")) 
print(decode(encode("hii")))

[46, 47, 47]
hii

  • 制作数据集
import torch
# 生成数据集
data = torch.tensor(encode(text), dtype=torch.long)
print(len(data))
n = int(len(data) * 0.9)
train_data = data[:n]
val_data = data[n:]
print(train_data[:1000])

1115394
tensor([18, 47, 56, 57, 58, 1, 15, 47, 58, 47, 64, 43, 52, 10, 0, 14, 43, 44,
53, 56, 43, 1, 61, 43, 1, 54, 56, 53, 41, 43, 43, 42, 1, 39, 52, 63,
1, 44, 59, 56, 58, 46, 43, 56, 6, 1, 46, 43, 39, 56, 1, 51, 43, 1,
57, 54, 43, 39, 49, 8, 0, 0, 13, 50, 50, 10, 0, 31, 54, 43, 39, 49,

  • 构建dataloader
import torch
batch_size = 4
torch.manual_seed(1337)
def get_batch(split):
    datasets = {
        'train': train_data,
        'val': val_data,
    }[split]
    ix = torch.randint(0, len(datasets) - block_size, (batch_size,))
    x = torch.stack([datasets[i:i+block_size] for i in ix])
    y = torch.stack([datasets[1+i:i+block_size+1] for i in ix])
    return x, y

xb, yb = get_batch('train')
print(f'x shape is: {xb.shape}, y shape is: {yb.shape}')
print(f'x is {xb}')
print(f'y is {yb}')

x shape is: torch.Size([4, 8]), y shape is: torch.Size([4, 8])
x is tensor([[24, 43, 58, 5, 57, 1, 46, 43],
[44, 53, 56, 1, 58, 46, 39, 58],
[52, 58, 1, 58, 46, 39, 58, 1],
[25, 17, 27, 10, 0, 21, 1, 54]])
y is tensor([[43, 58, 5, 57, 1, 46, 43, 39],
[53, 56, 1, 58, 46, 39, 58, 1],
[58, 1, 58, 46, 39, 58, 1, 46],
[17, 27, 10, 0, 21, 1, 54, 39]])

2.2 构建pipeline

  • 定义一个最简单的网络
import torch.nn as nn
import torch.nn.functional as F
torch.manual_seed(1337)
class BigramLanguageModel(nn.Module):

    def __init__(self, vocab_size):
        super().__init__()
        self.token_embedding_table = nn.Embedding(vocab_size, vocab_size)

    def forward(self, idx, targets=None):
        self.out = self.token_embedding_table(idx)
        return self.out
    
xb, yb = get_batch('train')
model = BigramLanguageModel(vocab_size)
out = model(xb)
print(f'x shape is: {xb.shape}')
print(f'out shape is: {out.shape}')

x shape is: torch.Size([4, 8])
out shape is: torch.Size([4, 8, 65])

  • 包含输出以后的完整的pipeline是
from typing import Iterator
import torch.nn as nn
import torch.nn.functional as F
torch.manual_seed(1337)
class BigramLanguageModel(nn.Module):

    def __init__(self, vocab_size):
        super().__init__()
        self.token_embedding_table = nn.Embedding(vocab_size, vocab_size)

    def forward(self, idx, targets=None):
        logits = self.token_embedding_table(idx)  # B, T, C
        if targets is None:
            loss = None
        else:
            B, T, C = logits.shape
            logits = logits.view(B*T, C) # 这是很好理解的
            targets = targets.view(B*T) # 但是targets是B,T
            loss = F.cross_entropy(logits, targets)

        return logits, loss

    def generate(self, idx, max_new_tokens):
        for _ in range(max_new_tokens):
            logits, loss = self(idx)    
            logits = logits[:, -1, :]  # B, C    
            prob = F.softmax(logits, dim=-1)  # 对最后一维进行softmax
            ix = torch.multinomial(prob, num_samples=1) # B, C
            print(idx)
            idx = torch.cat((idx, ix), dim=1)   # B,T+1
            print(idx)
        return idx

            # ix = ix.view(B)
    
xb, yb = get_batch('train')
model = BigramLanguageModel(vocab_size)
out, loss = model(xb)
print(f'x shape is: {xb.shape}')
print(f'out shape is: {out.shape}')

idx = idx = torch.zeros((1, 1), dtype=torch.long)
print(decode(model.generate(idx, max_new_tokens=10)[0].tolist()))
# print(f'idx is {idx}')

x shape is: torch.Size([4, 8])
out shape is: torch.Size([4, 8, 65])
tensor([[0]])
tensor([[ 0, 50]])
tensor([[ 0, 50]])
tensor([[ 0, 50, 7]])
tensor([[ 0, 50, 7]])
tensor([[ 0, 50, 7, 29]])
tensor([[ 0, 50, 7, 29]])
tensor([[ 0, 50, 7, 29, 37]])
tensor([[ 0, 50, 7, 29, 37]])
tensor([[ 0, 50, 7, 29, 37, 48]])
tensor([[ 0, 50, 7, 29, 37, 48]])
tensor([[ 0, 50, 7, 29, 37, 48, 58]])
tensor([[ 0, 50, 7, 29, 37, 48, 58]])
tensor([[ 0, 50, 7, 29, 37, 48, 58, 5]])
tensor([[ 0, 50, 7, 29, 37, 48, 58, 5]])
tensor([[ 0, 50, 7, 29, 37, 48, 58, 5, 15]])
tensor([[ 0, 50, 7, 29, 37, 48, 58, 5, 15]])
tensor([[ 0, 50, 7, 29, 37, 48, 58, 5, 15, 24]])
tensor([[ 0, 50, 7, 29, 37, 48, 58, 5, 15, 24]])
tensor([[ 0, 50, 7, 29, 37, 48, 58, 5, 15, 24, 12]])
l-QYjt’CL?

这里有几个地方需要注意,首先输入输出是:

x is tensor([[24, 43, 58, 5, 57, 1, 46, 43],
[44, 53, 56, 1, 58, 46, 39, 58],
[52, 58, 1, 58, 46, 39, 58, 1],
[25, 17, 27, 10, 0, 21, 1, 54]])
y is tensor([[43, 58, 5, 57, 1, 46, 43, 39],
[53, 56, 1, 58, 46, 39, 58, 1],
[58, 1, 58, 46, 39, 58, 1, 46],
[17, 27, 10, 0, 21, 1, 54, 39]])

并且这个pipeline,网络对输入的长度也没有限制

  • 开始训练
    这个时候我们需要构建一个完整的训练代码,如果还是用jupyter notebook,每次改变了网络的一个组成部分,需要重新执行很多地方,比较麻烦,所以构建一个.py文件。
import torch
import torch.nn as nn
import torch.nn.functional as F

# hyperparameters
batch_size = 32
block_size = 8
max_iter = 3000
eval_interval = 300
learning_rate = 1e-2
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
# ---------------------

torch.manual_seed(1337)

text = open("input.txt", "r", encoding='utf-8').read()
chars = sorted(list(set(text)))
vocab_size = len(chars)

stoi = {ch : i for i, ch in enumerate(chars)}
itos = {i : ch for i, ch in enumerate(chars)}
encode = lambda s: [stoi[ch] for ch in s]
decode = lambda l: ''.join([itos[i] for i in l])

# 生成数据集
data = torch.tensor(encode(text), dtype=torch.long)
n = int(len(data) * 0.9)
train_data = data[:n]
val_data = data[n:]

def get_batch(split):
    datasets = {
        'train': train_data,
        'val': val_data,
    }[split]
    ix = torch.randint(0, len(datasets) - block_size, (batch_size,))
    x = torch.stack([datasets[i:i+block_size] for i in ix])
    y = torch.stack([datasets[1+i:i+block_size+1] for i in ix])
    x, y = x.to(device), y.to(device)
    return x, y

@torch.no_grad()
def estimate_loss():
    out = {}
    model.eval()
    for split in ['train', 'val']:
        losses = torch.zeros(eval_iters)
        for k in range(eval_iters):
            X, Y = get_batch(split)
            logits, loss = model(X, Y)
            losses[k] = loss.item()
        out[split] = losses.mean()
    model.train()
    return out

class BigramLanguageModel(nn.Module):

    def __init__(self, vocab_size):
        super().__init__()
        self.token_embedding_table = nn.Embedding(vocab_size, vocab_size)

    def forward(self, idx, targets=None):
        # import pdb; pdb.set_trace()
        logits = self.token_embedding_table(idx)  # B, T, C
        if targets is None:
            loss = None
        else:
            B, T, C = logits.shape
            logits = logits.view(B*T, C) # 这是很好理解的
            targets = targets.view(B*T) # 但是targets是B,T, C其实并不好理解
            loss = F.cross_entropy(logits, targets)

        return logits, loss

    def generate(self, idx, max_new_tokens):
        for _ in range(max_new_tokens):
            logits, loss = self(idx)    
            logits = logits[:, -1, :]  # B, C    
            prob = F.softmax(logits, dim=-1)  # 对最后一维进行softmax
            ix = torch.multinomial(prob, num_samples=1) # B, 1
            # print(idx)
            idx = torch.cat((idx, ix), dim=1)   # B,T+1
            # print(idx)
        return idx

model = BigramLanguageModel(vocab_size)
m = model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)

lossi = []
for iter in range(max_iter):

    if iter % eval_interval == 0:
        losses = estimate_loss()
        print(f'step {iter}: train loss {losses["train"]:.4f}, val loss {losses["val"]:.4f}')
    xb, yb = get_batch('train')
    out, loss = m(xb, yb)
    optimizer.zero_grad(set_to_none=True)
    loss.backward()
    optimizer.step()

# generate from the model
context = torch.zeros((1,1), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))



输出的结果是

step 0: train loss 4.7305, val loss 4.7241
step 300: train loss 2.8110, val loss 2.8249
step 600: train loss 2.5434, val loss 2.5682
step 900: train loss 2.4932, val loss 2.5088
step 1200: train loss 2.4863, val loss 2.5035
step 1500: train loss 2.4665, val loss 2.4921
step 1800: train loss 2.4683, val loss 2.4936
step 2100: train loss 2.4696, val loss 2.4846
step 2400: train loss 2.4638, val loss 2.4879
step 2700: train loss 2.4738, val loss 2.4911
CEThik brid owindakis b, bth
HAPet bobe d e.
S:
O:3 my d?
LUCous:
Wanthar u qur, t.
War dXENDoate awice my.
Hastarom oroup
Yowhthetof isth ble mil ndill, ath iree sengmin lat Heriliovets, and Win nghir.
Swanousel lind me l.
HAshe ce hiry:
Supr aisspllw y.
Hentofu n Boopetelaves
MPOLI s, d mothakleo Windo whth eisbyo the m dourive we higend t so mower; te
AN ad nterupt f s ar igr t m:
Thin maleronth,
Mad
RD:
WISo myrangoube!
KENob&y, wardsal thes ghesthinin couk ay aney IOUSts I&fr y ce.
J

2.3 self-attention

我们处理当前的字符的时候,需要和历史字符进行通信,历史字符可以看成是某一种特征,使用最简单的均值提取的方式提取历史字符的feature

# 最简单的通信方式,将当前的字符和之前的字符平均进行沟通
# 可以看成是history information的features
a = torch.tril(torch.ones(3, 3))
print(a)
a = torch.tril(a) / torch.sum(a, 1, keepdim=True)
print(a)

tensor([[1., 0., 0.],
[1., 1., 0.],
[1., 1., 1.]])
tensor([[1.0000, 0.0000, 0.0000],
[0.5000, 0.5000, 0.0000],
[0.3333, 0.3333, 0.3333]])

可以采用softmax的方式进行mask

import torch.nn.functional as F
tril = torch.tril(torch.ones(T, T))  # 某种意义上的Q
wei = torch.zeros(T, T) # K
wei = wei.masked_fill(tril == 0, float('-inf'))  
print(wei)
wei = F.softmax(wei)
print(wei)

tensor([[0., -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., -inf],
[0., 0., 0., 0., 0., 0., 0., 0.]])
tensor([[1.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.5000, 0.5000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.3333, 0.3333, 0.3333, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.2500, 0.2500, 0.2500, 0.2500, 0.0000, 0.0000, 0.0000, 0.0000],
[0.2000, 0.2000, 0.2000, 0.2000, 0.2000, 0.0000, 0.0000, 0.0000],
[0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.0000, 0.0000],
[0.1429, 0.1429, 0.1429, 0.1429, 0.1429, 0.1429, 0.1429, 0.0000],
[0.1250, 0.1250, 0.1250, 0.1250, 0.1250, 0.1250, 0.1250, 0.1250]])

特征提取的结果

xbow2 = wei @ x # (T, T) @ (B, T, C) --> (B, T, C)  # x对应v
print(xbow2.shape)

torch.Size([4, 8, 2])

加上pos_emb现在的forward版本

def forward(self, idx, targets=None):
        # import pdb; pdb.set_trace()
        tok_emb = self.token_embedding_table(idx)  # B, T, C(n_emb)
        pos_emb = self.position_embedding_table(torch.range(T, device=device)) # T,C 
        # positional encoding
        x = tok_emb + pos_emb   # (B, T, C) broadcasting
        logits = self.lm_head(x)  # B, T, C(vocab_size)
        if targets is None:
            loss = None
        else:
            B, T, C = logits.shape
            logits = logits.view(B*T, C) # 这是很好理解的
            targets = targets.view(B*T) # 但是targets是B,T, C其实并不好理解
            loss = F.cross_entropy(logits, targets)

        return logits, loss

karpathy 给出的一些启示

  • Attention is a communication mechanism. Can be seen as nodes in a directed graph looking at each other and aggregating information with a weighted sum from all nodes that point to them, with data-dependent weights.
  • There is no notion of space. Attention simply acts over a set of vectors. This is why we need to positionally encode tokens.
  • Each example across batch dimension is of course processed completely independently and never “talk” to each other
  • In an “encoder” attention block just delete the single line that does masking with tril, allowing all tokens to communicate. This block here is called a “decoder” attention block because it has triangular masking, and is usually used in autoregressive settings, like language modeling.
  • “self-attention” just means that the keys and values are produced from the same source as queries. In “cross-attention”, the queries still get produced from x, but the keys and values come from some other, external source (e.g. an encoder module)
  • “Scaled” attention additional divides wei by 1/sqrt(head_size). This makes it so when input Q,K are unit variance, wei will be unit variance too and Softmax will stay diffuse and not saturate too much. Illustration below

attention的公式其中scale是为了保证两个分布相乘的时候,方差不变的。

在这里插入图片描述

k = torch.randn(B, T, head_size)
q = torch.randn(B, T, head_size)
wei = q @ k.transpose(-2, -1)
wei_scale = wei / head_size**0.5
print(k.var())
print(q.var())
print(wei.var())
print(wei_scale.var())

输出结果

tensor(1.0278)
tensor(0.9802)
tensor(15.9041)
tensor(0.9940)

初始化对结果的影响很大,实际上来说我们还是很希望softmax初始化的结果是一个方差较小的分布,如果不进行scale

torch.softmax(torch.tensor([0.1, -0.2, 0.3, -0.2, 0.5]) * 8, dim=-1)

tensor([0.0326, 0.0030, 0.1615, 0.0030, 0.8000])

对原来的py文件做一些修改:
在这里插入图片描述

class Head(nn.Module):
    def __init__(self, head_size):
        super().__init__()
        self.query = nn.Linear(n_embd, head_size, bias=False)
        self.key = nn.Linear(n_embd, head_size, bias=False)
        self.value = nn.Linear(n_embd, head_size, bias=False)
        self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))

    def forward(self, x):
        # import pdb; pdb.set_trace()
        B, T, C = x.shape    
        q = self.query(x)      #(B, T, C)
        k = self.key(x)        #(B, T, C)
        v = self.value(x)      #(B, T, C)
        wei = q @ k.transpose(-2, -1) * C**-0.5 # (B,T,C)@(B,C,T) --> (B, T, T)
        wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) 
        wei = F.softmax(wei, dim=-1)   # (B, T, T)
        out = wei @ v   #(B, T, T) @ (B, T, C) --> (B, T, C)
        return out

修改模型

class BigramLanguageModel(nn.Module):
    def __init__(self, vocab_size):
        super().__init__()
        self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
        self.position_embedding_table = nn.Embedding(block_size, n_embd)
        self.sa_head = Head(n_embd)  # head的尺寸保持不变
        self.lm_head = nn.Linear(n_embd, vocab_size)

    def forward(self, idx, targets=None):
        # import pdb; pdb.set_trace()
        B, T = idx.shape
        tok_emb = self.token_embedding_table(idx)  # B, T, C(n_emb)
        pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # T,C 
        # positional encoding
        x = tok_emb + pos_emb   # (B, T, C) broadcasting
        x = self.sa_head(x)
        logits = self.lm_head(x)  # B, T, C(vocab_size)
        if targets is None:
            loss = None
        else:
            B, T, C = logits.shape
            logits = logits.view(B*T, C) # 这是很好理解的
            targets = targets.view(B*T) # 但是targets是B,T, C其实并不好理解
            loss = F.cross_entropy(logits, targets)

        return logits, loss

    def generate(self, idx, max_new_tokens):
        for _ in range(max_new_tokens):
            idx_cmd = idx[:, -block_size:]   # (B, T)
            logits, loss = self(idx_cmd)    
            logits = logits[:, -1, :]  # B, C    
            prob = F.softmax(logits, dim=-1)  # 对最后一维进行softmax
            ix = torch.multinomial(prob, num_samples=1) # B, 1
            # print(idx)
            idx = torch.cat((idx, ix), dim=1)   # B,T+1
            # print(idx)
        return idx

加上self-attention的结果
step 4500: train loss 2.3976, val loss 2.4041

2.4 multi-head attention

在这里插入图片描述

这里借鉴了group convolutional 的思想,

class MultiHeadAttention(nn.Module):
    """ multiple head of self attention in parallel """
    def __init__(self, num_heads, head_size):
        super().__init__()
        self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])

    def forward(self, x):
        return torch.cat([h(x) for h in self.heads], dim=-1)

应用的时候

self.sa_head = MultiHeadAttention(4, n_embd//4)  # head的尺寸保持不变

训练的结果

step 4500: train loss 2.2679, val loss 2.2789

2.5 feedforward network

在这里插入图片描述
在这里插入图片描述

加上feedforward的结果
step 4500: train loss 2.2337, val loss 2.2476

同时用一个block表示这个这个单元,
一个transform的block可以理解成一个connection 组成部分+computation组成部分

class Block(nn.Module):
    def __init__(self, n_embd, n_head):
        super().__init__()
        head_size = n_embd // n_head
        self.sa = MultiHeadAttention(n_head, head_size)
        self.ffwd = FeedForward(n_embd)
    
    def forward(self, x):
        x = self.sa(x)
        x = self.ffwd(x)
        return x

修改模型的定义

class BigramLanguageModel(nn.Module):
    def __init__(self, vocab_size):
        super().__init__()
        self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
        self.position_embedding_table = nn.Embedding(block_size, n_embd)
        self.blocks = nn.Sequential(
            Block(n_embd, n_head=4),
            Block(n_embd, n_head=4),
            Block(n_embd, n_head=4),
        )
        self.lm_head = nn.Linear(n_embd, vocab_size)

    def forward(self, idx, targets=None):
        # import pdb; pdb.set_trace()
        B, T = idx.shape
        tok_emb = self.token_embedding_table(idx)  # B, T, C(n_emb)
        pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # T,C 
        # positional encoding
        x = tok_emb + pos_emb   # (B, T, C) broadcasting
        x = self.blocks(x)
        logits = self.lm_head(x)  # B, T, C(vocab_size)
        if targets is None:
            loss = None
        else:
            B, T, C = logits.shape
            logits = logits.view(B*T, C) # 这是很好理解的
            targets = targets.view(B*T) # 但是targets是B,T, C其实并不好理解
            loss = F.cross_entropy(logits, targets)

        return logits, loss

2.6 Residual network

现在模型的深度已经很深了,直接训练很可能无法很好的收敛,需要另外一个很重要的工具,残差网络。

class Block(nn.Module):
    def __init__(self, n_embd, n_head):
        super().__init__()
        head_size = n_embd // n_head
        self.sa = MultiHeadAttention(n_head, head_size)
        self.ffwd = FeedForward(n_embd)
    
    def forward(self, x):
        x = x + self.sa(x)
        x = x + self.ffwd(x)
        return x

深度扩充了以后,很容易过拟合了

step 4500: train loss 2.0031, val loss 2.1067

2.7 Layer normalization

我们先来看一下很基础的batchnorm。加入x,y 是两个独立,并且均值为0,方差为1的分布。
根据Var(xy)=E(X)^2 * Var(Y) + E(Y)^2 * Var(X) + Var(X) * Var(Y)=1
再来看矩阵相乘后,每一行变成了T2个独立同分布的乘积,根据中心极限定理:它们的和将近似服从正态分布,均值为各随机变量均值之和,方差为各随机变量方差之和。
也就是说矩阵相乘后的第一列的var=T2*1, mean=0
所以在矩阵相乘的时候,进行scale T 2 \sqrt{T2} T2 可以normalize(var 是平方,所以用了开根号)
在这里插入图片描述

x = torch.ones(5,5)
x = torch.tril(x)
print(x)
print(x.mean(dim=0))
print(x.mean(dim=1))

观察一下矩阵normalize的特点

tensor([[1., 0., 0., 0., 0.],
[1., 1., 0., 0., 0.],
[1., 1., 1., 0., 0.],
[1., 1., 1., 1., 0.],
[1., 1., 1., 1., 1.]])
tensor([1.0000, 0.8000, 0.6000, 0.4000, 0.2000])
tensor([0.2000, 0.4000, 0.6000, 0.8000, 1.0000])

class BatchNorm1d:
  
  def __init__(self, dim, eps=1e-5, momentum=0.1):
    self.eps = eps
    self.momentum = momentum
    self.training = True
    # parameters (trained with backprop)
    self.gamma = torch.ones(dim)
    self.beta = torch.zeros(dim)
    # buffers (trained with a running 'momentum update')
    self.running_mean = torch.zeros(dim)
    self.running_var = torch.ones(dim)
  
  def __call__(self, x):
    # calculate the forward pass
    if self.training:
      if x.ndim == 2:
        dim = 0
      elif x.ndim == 3:
        dim = (0,1)
      xmean = x.mean(dim, keepdim=True) # batch mean
      xvar = x.var(dim, keepdim=True) # batch variance
    else:
      xmean = self.running_mean
      xvar = self.running_var
    xhat = (x - xmean) / torch.sqrt(xvar + self.eps) # normalize to unit variance
    self.out = self.gamma * xhat + self.beta
    # update the buffers
    if self.training:
      with torch.no_grad():
        self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * xmean
        self.running_var = (1 - self.momentum) * self.running_var + self.momentum * xvar
    return self.out
  
  def parameters(self):
    return [self.gamma, self.beta]

BatchNormalized对一列进行normalized, layernormalize 对一行进行normalized。

class BatchNorm1d:
  
  def __init__(self, dim, eps=1e-5, momentum=0.1):
    self.eps = eps
    self.momentum = momentum
    self.training = True
    # parameters (trained with backprop)
    self.gamma = torch.ones(dim)
    self.beta = torch.zeros(dim)
    # buffers (trained with a running 'momentum update')
    self.running_mean = torch.zeros(dim)
    self.running_var = torch.ones(dim)
  
  def __call__(self, x):
    # calculate the forward pass
    if self.training:
      dim = 1
      xmean = x.mean(dim, keepdim=True) # batch mean
      xvar = x.var(dim, keepdim=True) # batch variance
    else:
      xmean = self.running_mean
      xvar = self.running_var
    xhat = (x - xmean) / torch.sqrt(xvar + self.eps) # normalize to unit variance
    self.out = self.gamma * xhat + self.beta
    # update the buffers
    if self.training:
      with torch.no_grad():
        self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * xmean
        self.running_var = (1 - self.momentum) * self.running_var + self.momentum * xvar
    return self.out
  
  def parameters(self):
    return [self.gamma, self.beta]

如今用的比较 的模式
在这里插入图片描述
对应的代码
``python
class Block(nn.Module):
def init(self, n_embd, n_head):
super().init()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedForward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)

def forward(self, x):
    x = x + self.sa(self.ln1(x))
    x = x + self.ffwd(self.ln2(x))
    return x
并且一般会在连续的decoder block 模块后添加一个layerNorm
```python
class BigramLanguageModel(nn.Module):
    def __init__(self, vocab_size):
        super().__init__()
        self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
        self.position_embedding_table = nn.Embedding(block_size, n_embd)
        self.blocks = nn.Sequential(
            Block(n_embd, n_head=4),
            Block(n_embd, n_head=4),
            Block(n_embd, n_head=4),
            nn.LayerNorm(n_embd),
        )
        self.lm_head = nn.Linear(n_embd, vocab_size)

加上layerNormlization以后,精度又上升了一些

step 4500: train loss 1.9931, val loss 2.0892
现在训练误差和验证误差的loss比较大 ,需要想办法解决一下。

2.8 使用dropout

  • 在head 使用dropout,防止模型被特定的feature给过分影响了提高模型的鲁棒性。
    def forward(self, x):
        # import pdb; pdb.set_trace()
        B, T, C = x.shape    
        q = self.query(x)      #(B, T, C)
        k = self.key(x)        #(B, T, C)
        v = self.value(x)      #(B, T, C)
        wei = q @ k.transpose(-2, -1) * C**-0.5 # (B,T,C)@(B,C,T) --> (B, T, T)
        wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) 
        wei = F.softmax(wei, dim=-1)   # (B, T, T)
        wei = self.dropout(wei)
        out = wei @ v   #(B, T, T) @ (B, T, C) --> (B, T, C)
        return out
  • 在multihead上使用dropout,也是同样的原理,防止特定feature过分影响了模型
    def forward(self, x):
        out =  torch.cat([h(x) for h in self.heads], dim=-1)
        out = self.dropout(self.proj(out))
        return out
  • 在计算单元的输出结果前使用dropout
class FeedForward(nn.Module):
    def __init__(self, n_embd):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(n_embd, 4 * n_embd),
            nn.ReLU(),
            nn.Linear(4 * n_embd, n_embd),
            nn.Dropout(dropout),
        )

修改设定参数

# hyperparameters
batch_size = 64
block_size = 256
max_iter = 5000
eval_interval = 500
learning_rate = 3e-4    # self-attention can't tolerate very high learnning rate
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
n_embd = 384
n_layer = 6
n_head = 6
dropout = 0.2

step 4500: train loss 1.1112, val loss 1.4791

References

[1] https://www.youtube.com/watch?v=kCc8FmEb1nY

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1642514.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

安卓 app icon大小 安卓app界面尺寸大小

移动应用的界面设计画布尺寸设计多大(特别是Android)、图标和字体大小怎么定、需要设计多套设计稿么、如何切图以配合开发的实现? 本篇将结合iOS和android官方的设计规范、搜集的资料以及工作中的摸索,来分享移动应用界面设计中的…

《Fundamentals of Power Electronics》——基础交流建模方法

PWM整流器小信号交流模型建模的主要步骤为: (a)利用小纹波近似的动态版本,建立与电感和电容波形的低频平均值有关的方程; (b)平均方程的扰动和线性化; (c)交流等效电路模型的建立。 以下图buck-boost电路为例进行分析。 首先测…

分类规则挖掘(一)

目录 一、分类问题概述(一)分类规则挖掘(二)分类规则评估(三)分类规则应用 二、k-最近邻分类法 一、分类问题概述 动物分类:设有动物学家陪小朋友林中散步,若有动物突然从小朋友身边…

电路板/硬件---器件

电阻 电阻作用 电阻在电路中扮演着重要的角色,其作用包括: 限制电流:电阻通过阻碍电子流动的自由而限制电流。这是电阻最基本的功能之一。根据欧姆定律,电流与电阻成正比,电阻越大,通过电阻的电流就越小。…

【机器视觉】C# .NET 8 部署yolov9 onnx对象检测

这段代码展示了一个使用YOLOv9进行对象检测的简单测试框架。代码主体以及其功能分为以下几个关键部分: 创建测试图片数组 _testImages,它包含了图片文件名和对应的标签。使用 buildTests 方法来从给定的文件名中加载图片并调整尺寸,准备测试数…

Linux搭建sqlilabs靶场

提前准备: 文章中所使用到的Linux系统:Ubantu20.4sqlilabs靶场下载地址:GitHub - Audi-1/sqli-labs: SQLI labs to test error based, Blind boolean based, Time based. 一. 安装phpstudy phpstudy安装命令:wget -O install.sh h…

【链表-双向链表】

链表-双向链表 1.链表的分类1.1 分类依据1.2 常用类型 2.双向链表的2.1 双向链表的结构2.2 双向链表的操作2.2.1 **初始化**2.2.2 **尾插**2.2.3 **头插**2.2.4 **尾删**2.2.5 **头删**2.2.6 在pos位置之后插入数据2.2.7 删除pos节点2.2.8 查找2.2.9 销毁 1.链表的分类 1.1 分…

Java如何获取当前日期和时间?

Java如何获取当前日期和时间? 本文将为您介绍 Java 中关于日期和时间获取的方法,以及介绍 Java 8 中获取日期和时间的全新API。 1、 System.currentTimeMillis() 获取标准时间可以使用 System.currentTimeMillis() 方法来获取,此方法优势是…

Qt与MySQL连接

QT连接Mysql数据库(详细成功版)-CSD N博客 我的MySQL是64位的,所以我的Qt的套件也需要是64位的 遇到的问题: (available drivers中已经有QMYSQL QMYSQL3,还是not loaded) QSqlDatabase: QMYS…

专项技能训练五《云计算网络技术与应用》实训7-1:安装mininet

文章目录 mininet安装1. 按6-1教程安装opendaylight控制器。2. 按6-2教程安装RYU控制器。3. 按5-1教程安装openvswitch虚拟交换机并开启服务。4. 将老师所给mininet安装包试用winSCP传送至电脑端。5. 安装net-tools。6. 安装mininet7. 安装完成后,使用命令建立拓扑&…

Jenkins集成Kubernetes 部署springboot项目

文章目录 准备部署的yml文件Harbor私服配置测试使用效果Jenkins远程调用参考文章 准备部署的yml文件 apiVersion: apps/v1 kind: Deployment metadata:namespace: testname: pipelinelabels:app: pipeline spec:replicas: 2selector:matchLabels:app: pipelinetemplate:metada…

腾讯云IM即时通信引入(React Web端组件式)

开发环境要求 React ≥ v18.0 (17.x 版本不支持) TypeScript node(12.13.0 ≤ node 版本 ≤ 17.0.0, 推荐使用 Node.js 官方 LTS 版本 16.17.0) npm(版本请与 node 版本匹配) chat-uikit-react 集成 …

软件工程习题答案2024最新版

习题一答案 一、选择题 软件的主要特性是(A B C)。 A) **无形 **B) 高成本 C) **包括程序和文档 ** D) 可独立构成计算机系统 软件工程三要素是(B)。 A) 技术、方法和工具 B) 方法、工具和过程 C) 方法、对象和类 D) 过程、模型、方法 包含风险分析的软件工程模型是(A)…

算法设计与分析——期末1h

目录 第一章 算法的定义 算法的三要素 算法的基本性质 算法的时间复杂度数量级: 第二章 兔子繁殖问题(递推法) 猴子吃桃问题(递推法) 穿越沙漠问题(递推法(倒推)) 百钱百…

Linux基础之yum和vim

目录 一、软件包管理器yum 1.1 软件包的概念 1.2 软件包的查看 1.3 软件包的安装和删除 二、Linux编辑器之vim 2.1 vim的基本概念 2.2 正常模式(命令模式) 2.3 底行模式 2.4 输入模式 2.5 替换模式 2.6 视图模式 2.7 总结 一、软件包管理器yu…

基于springboot+vue+Mysql的幼儿园管理系统

开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…

【Flask 系统教程 5】视图进阶

类视图 在 Flask 中,除了使用函数视图外,你还可以使用类视图来处理请求。类视图提供了一种更为结构化和面向对象的方式来编写视图函数,使得代码组织更清晰,并且提供了更多的灵活性和可扩展性。 创建类视图 要创建一个类视图&am…

Reactor模型详解

目录 1.概述 2.Single Reactor 3.muduo库的Multiple Reactors模型如下 1.概述 维基百科对Reactor模型的解释 The reactor design pattern is an event handling pattern for handling service requests delivered concurrently to a service handler by one or more inputs.…

办公数据分析利器:Excel与Power Query透视功能

数据分析利器:Excel与Power Query透视功能 Excel透视表和Power Query透视功能是强大的数据分析工具,它们使用户能够从大量数据中提取有意义的信息和趋势,可用于汇总、分析和可视化大量数据。 本文通过示例演示Power Query透视功能的一个小技…

【与 Apollo 共创生态:展望自动驾驶全新未来】

1、引言 历经七年的不懈追求与创新,Apollo开放平台已陆续推出了13个版本,汇聚了来自全球170多个国家与地区的16万名开发者及220多家合作伙伴。随着Apollo开放平台的不断创新与发展,Apollo在2024年4月19日迎来了Apollo开放平台的七周年大会&a…