利用word2vec包将中文转变为词向量

news2024/11/24 1:06:15

代码展示:

import jieba
import re
import json
import logging
import sys
import gensim.models as word2vec
from gensim.models.word2vec import LineSentence, logger

pattern = u'[\\s\\d,.<>/?:;\'\"[\\]{}()\\|~!\t"@#$%^&*\\-_=+a-zA-Z,。\n《》、?:;“”‘’{}【】()…¥!—┄-]+'


def get_sentence(data_file):
    f = open(data_file, encoding='utf-8') #读取json数据
    reader = f.readlines()
    sentences = []  # 修改:存放每个句子的列表
    for line in reader:
        line = json.loads(line.strip())
        sentence = ' '.join(jieba.cut(re.sub(pattern, '', line['sentence'])))
        sentences.append(sentence)  # 修改:将每个分词后的句子添加到 sentences 列表中
    word_lists = [sentence.split() for sentence in sentences]
    return word_lists


def train_word2vec(sentences, out_vector):
    # 设置输出日志
    logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
    logger.info("running %s" % ' '.join(sys.argv))

    # 训练word2vec模型
    model = word2vec.Word2Vec(sentences, vector_size=100, sg=1, window=5, min_count=5, workers=4, epochs=5)

    # 保存word2vec模型
    model.save("word2vec_model.model")

    # 保存词向量到文件
    model.wv.save_word2vec_format(out_vector, binary=False)


def load_model(w2v_path):
    model = word2vec.Word2Vec.load(w2v_path)  # 读取保存的模型

    return model


def calculate_most_similar(model, word):
    similar_words = model.wv.most_similar(word)
    print(word)
    for term in similar_words:
        print(term[0], term[1])


if __name__ == '__main__':
    out_vector = 'word_vectors.txt'
    word_lists = get_sentence('train.json')
    train_word2vec(word_lists, out_vector)
    model = load_model('word2vec_model.model')
    calculate_most_similar(model, "美国")  # 输出与美国在词向量空间中相近的词

结果展现:

 

word2vec.Word2Vec 方法中的参数含义如下:

  • sentences:输入的句子集合,可以是一个可迭代对象,每个元素表示一个句子,句子则是由单词组成的列表。

  • vector_size:词向量的维度大小。它决定了每个单词在训练过程中学习到的词向量的维度。

  • window:词向量训练时的上下文窗口大小。窗口大小表示当前词与预测词之间的最大距离。在训练时,窗口大小决定了模型考虑的上下文单词数量。

  • min_count:忽略频率低于此值的单词。如果一个单词在整个语料库中的出现次数少于 min_count,则该单词将被忽略,不会被用于训练模型。

  • workers:训练时使用的线程数量,用于加速训练过程。指定多个线程可以加快模型的训练速度。

  • sg:用于指定训练算法的模型类型。当 sg=0 时,表示使用 CBOW 模型;当 sg=1 时,表示使用 Skip-Gram 模型。

  • epochs:指定训练的迭代次数。一个迭代表示对整个语料库的一次遍历。

这些参数共同决定了 Word2Vec 模型的训练过程和最终学习到的词向量的质量。根据具体的应用场景和语料库的特点,可以调整这些参数以获得更好的结果。

sentence的具体格式(两个列表):

sentences = [['海陆空', '全能', '反恐', '王'], ['说', '出来', '你', '可能', '不', '信', '旅游', '日', '免费', '吃', '砂锅', '自助餐']]

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1634292.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网页使用之如何返回json/xml

后端返回json数据给前端进行渲染的方式比较熟悉&#xff0c;至于返回html页面&#xff0c;返回xml的方式接触逐渐减少&#xff0c;来在项目中熟悉这一点。 返回文本数据 json姿势的返回实属最简单的方式&#xff0c;在SpringBoot应用中&#xff0c;有两种简单的方式 1.直接在…

【docker 】Windows10安装 Docker

安装 Hyper-V Hyper-V 是微软开发的虚拟机&#xff0c;仅适用于 Windows 10。 按键&#xff1a; win键X &#xff0c;选着程序和功能 在查找设置中输入&#xff1a;启用或关闭Windows功能 选中Hyper-V 点击确定 安装 Docker Desktop for Windows Docker Desktop 官方下载…

LeetCode46:全排列

题目描述 给定一个不含重复数字的数组 nums &#xff0c;返回其 所有可能的全排列 。你可以 按任意顺序 返回答案 解题思想 使用used记录元素是否使用过&#xff0c;排列是有序的&#xff0c;要注意与组合的区别。 代码 class Solution { public:vector<vector<int>…

在线教程|零门槛部署 Llama 3,70B 版本只占 1.07G 存储空间,新用户免费体验 8B 版本

4 月 18 日&#xff0c;Meta 宣布开源 Llama 3&#xff0c;这个号称「迄今为止最好的开源大模型」一经发布&#xff0c;立刻引爆科技圈&#xff01; 发布当天恰逢斯坦福大学教授、AI 顶尖专家吴恩达的生日&#xff0c;作为 AI 开源倡导者&#xff0c;他激动地发文表示&#xff…

Llama 3 ——开源大模型Llama 3从概念到使用

概述 Meta公司自豪地宣布推出其最新的开源大型语言模型——Llama 3&#xff0c;这是一款专为未来AI挑战而设计的先进工具。Llama 3包含两个不同参数规模的版本&#xff0c;以满足多样化的计算需求&#xff1a; 8B版本&#xff1a;优化了在消费级GPU上的部署和开发流程&#xf…

二、VLAN原理和配置

vlan不是协议&#xff0c;是一个技术&#xff0c;虚拟局域网技术&#xff0c;基于802.1q协议。 vlan&#xff08;虚拟局域网&#xff09;&#xff0c;将一个物理的局域网在逻辑上划分成多个广播域的技术。 目录 1.冲突域和广播域 概念 范围 2.以太网帧格式 3.以太网帧封装…

自动驾驶中的深度学习和计算机视觉

书籍&#xff1a;Applied Deep Learning and Computer Vision for Self-Driving Cars: Build autonomous vehicles using deep neural networks and behavior-cloning techniques 作者&#xff1a;Sumit Ranjan&#xff0c;Dr. S. Senthamilarasu 出版&#xff1a;Packt 书籍…

使用LocalGPT+cpolar打造可远程访问的本地私有类chatgpt服务

文章目录 前言环境准备1. localGPT部署2. 启动和使用3. 安装cpolar 内网穿透4. 创建公网地址5. 公网地址访问6. 固定公网地址 前言 本文主要介绍如何本地部署LocalGPT并实现远程访问&#xff0c;由于localGPT只能通过本地局域网IP地址端口号的形式访问&#xff0c;实现远程访问…

电子式汽车机油压力传感器的接线方法及特点

电子式机油压力传感器由厚膜压力传感器芯片、信号处理电路、外壳、固定电路板装置和两根引线&#xff08;信号线和报警线&#xff09;组成。信号处理电路由电源电路、传感器补偿电路、调零电路、电压放大电路、电流放大电路、滤波电路和报警电路组成。 厚膜压力传感器是20世纪…

杰发科技AC7840——SPI通信简介(1)_跑通Demo

0. 简介 一些配置项&#xff1a; CPHA&#xff1a;相序 CPLO&#xff1a;极性 看着demo需要按键&#xff0c;于是去掉按键&#xff0c;去掉打印&#xff0c;直接输出波形看逻辑分析仪的信号。 其实现在做这些demo测试应该都有逻辑分析仪&#xff0c;直接看波形更直观一点。…

git误操作版本回退的方法

场景&#xff1a;在使用git进行代码提交的时候不小心执行了git reset 命令进行了版本回退但是在这之前进行了git add . git commit -m "提交"等命令&#xff0c;正常情况下就可以直接使用 git reset 版本号 进行代码的回退&#xff0c;但是发现自己不能找打上一个提…

搭建MongoDB副本集

文章目录 一、什么是MongoDB的副本集二、副本集的架构三、副本集的成员四、部署副本集1、节点划分2、安装MongoDB2.1、下载解压安装包 3、创建主节点3.1、创建存储数据和日志的目录3.2、新建配置文件3.3、启动节点服务 4、创建副本节点4.1、创建存储数据和日志的目录4.2、新建配…

场景文本检测识别学习 day06(Vi-Transformer论文精读)

Vi-Transformer论文精读 在NLP领域&#xff0c;基于注意力的Transformer模型使用的非常广泛&#xff0c;但是在计算机视觉领域&#xff0c;注意力更多是和CNN一起使用&#xff0c;或者是单纯将CNN的卷积替换成注意力&#xff0c;但是整体的CNN 架构没有发生改变VIT说明&#x…

面试笔记——线程池

线程池的核心参数&#xff08;原理&#xff09; public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler)corePoolSize …

2024年 Java 面试八股文——Redis篇

目录 1、介绍下Redis Redis有哪些数据类型 难度系数&#xff1a;⭐ 2、Redis提供了哪几种持久化方式 难度系数&#xff1a;⭐ 3、Redis为什么快 难度系数&#xff1a;⭐ 4、Redis为什么是单线程的 难度系数&#xff1a;⭐ 5、Redis服务器的的内存是多大…

RustGUI学习(iced)之小部件(三):如何使用下拉列表pick_list?

前言 本专栏是学习Rust的GUI库iced的合集,将介绍iced涉及的各个小部件分别介绍,最后会汇总为一个总的程序。 iced是RustGUI中比较强大的一个,目前处于发展中(即版本可能会改变),本专栏基于版本0.12.1. 概述 这是本专栏的第三篇,主要讲述下拉列表pick_list部件的使用,会…

c#创建新项目

确保已安装.NET Core SDK。&#xff08;visual studio installer中可安装&#xff09; cmd中先引用到文件夹目录下。 mkdir MyConsoleApp MyConsoleApp是项目文件夹的名字。 mkdir 是一个命令行工具&#xff0c;用于在文件系统中创建新的目录&#xff08;文件夹&#xff09;…

【YOLO改进】换遍IoU损失函数之DIoU Loss(基于MMYOLO)

DIoU损失函数 论文链接&#xff1a;https://arxiv.org/pdf/1911.08287 DIoU损失函数&#xff08;Distance Intersection over Union Loss&#xff09;是一种在目标检测任务中常用的损失函数&#xff0c;用于优化边界框的位置。这种损失函数是IoU损失函数的改进版&#xff0c;…

windows驱动开发-电源状态(二)

Modern Standby这个特性其实很难准确的讲清楚&#xff0c;因为它是一个系统行为不是驱动功能行为&#xff0c;应用层、功能驱动、系统总线、设备本身都有不同程度的参与&#xff0c;并且它属于否决性的&#xff0c;一个系统中&#xff0c;只要有一个设备不支持Modern Standby&a…

新手如何用Postman做接口自动化测试?

1、什么是自动化测试 把人对软件的测试行为转化为由机器执行测试行为的一种实践。 例如GUI自动化测试&#xff0c;模拟人去操作软件界面&#xff0c;把人从简单重复的劳动中解放出来&#xff0c;本质是用代码去测试另一段代码&#xff0c;属于一种软件开发工作&#xff0c;已…