场景文本检测识别学习 day06(Vi-Transformer论文精读)

news2024/11/24 2:41:55

Vi-Transformer论文精读

  • 在NLP领域,基于注意力的Transformer模型使用的非常广泛,但是在计算机视觉领域,注意力更多是和CNN一起使用,或者是单纯将CNN的卷积替换成注意力,但是整体的CNN 架构没有发生改变
  • VIT说明,纯Transformer不使用CNN也可以在视觉领域表现很好,尤其是当我们在大规模数据集上做预训练,再去小数据集上做微调,可以获得跟最好的CNN相媲美的结果
  • 在NLP领域,BERT提出的方法已经成为主流:先在大规模的数据集上做预训练,再去小数据集上做微调,同时由于Transformer模型的高扩展性和高效性,现在的数据集和模型可以做的越来越大,同时还没有任何性能饱和的现象,因此VIT想将Transformer应用到计算机视觉中
    在这里插入图片描述
  • 但是Transformer有以下的问题:
    1. Transformer中最主要的操作是自注意力操作,而自注意力操作是需要所有元素都要和所有元素去交互,两两相互的,计算得到的Attention,再将这个Attention去做加权平均,最后得到输出,因此自注意力的计算复杂度为 O ( n 2 ) O(n^2) O(n2),但是目前硬件能支持的这个序列长度n为几百或者上千,在BERT中n为512
    2. 但是在计算机视觉领域,如果我们想把2D的图片变成1D的序列,那么最简单最直观的方法就是把图片中的所有像素点当成序列的元素,直接拉直并输入进Transformer,一般来说在视觉领域,输入图片的尺寸为224224、800800等,将它直接拉直送入Transformer,得到的序列长度直接过万,计算复杂度太高,硬件跟不上
  • 针对以上的问题,有如下的解决方案:
    1. Local Network:既然直接把像素点当作Transformer的输入太长,导致计算复杂度太高无法训练,那么我们把网络中间的特征图当作Transformer的输入,直接降低输入序列的长度,例如Res50的特征图只有14*14,这就是可以接受的范围之内了
    2. Stand-Alone Attention:孤立注意力,既然使用整张输入图片的复杂度太高,那么我们改为使用一个局部的小窗口,来缩小输入序列的长度。Axial Attention:轴注意力,将图片的宽高拆分为两个轴,因此225225的输入序列就变为了2225的输入序列,也降低了输入序列的长度。
    3. Sparse Attention:稀疏点注意力。Block Attention:将输入图片分块,进行注意力计算
  • 以上这些解决方案虽然在CV上的结果都不错,但是需要很复杂的工程来加速运算。
  • 虽然已经有人在视觉领域使用注意力,但是一个纯Transformer的CV模型还没有,而纯Transformer可以继承它在NLP的高扩展性,这就是VIT的想法
    在这里插入图片描述
  • VIT通过将图片分割为1616个块,来解决输入序列太长的问题,如果输入图片的尺寸为224224,那么分割后的每块的尺寸为1414(224/16 = 14),那么输入序列长度就变为1414,这个输入长度就是Transformer可接受的长度,这样在NLP中一个句子有多少个单词就转换为了在CV中一个图片有多少个patch。
  • 同时不同于BERT的自监督训练方式,在VIT中,采用了有监督的方式来进行训练。同时类似于BERT,也仅仅使用了Transformer Encoder作为模型
  • 在中等大小的数据集上进行训练(如ImageNet),如果不加强约束,VIT其实比同等大小的Resnet性能要弱。这主要是因为Transformer比CNN要缺少一些归纳偏置(先验知识):
    1. 局部性:由于卷积核是一步一步的在输入图片上进行移动卷积的,所以CNN假设图片上相邻的区域会有相似的特征
    2. 平移等变性:由于卷积核不考虑位置,所以在输入图片的不同的位置的相同物体,卷积核的输出是相同的,但是由于在Transformer中,加入了位置编码,所以不同位置的相同物体,Transformer Encoder的输出也不会相同
  • 在大型数据集上进行训练,VIT就可以获得跟最好的CNN一样的性能,甚至可以超过它们
  • VIT只是单纯的将输入图片做一个预处理,分割成16*16的块,然后送到Transformer中就可以了,其他什么改动都不需要,这样就可以把一个视觉问题理解成一个NLP问题,同时仅仅在分割图片和位置编码的时候,使用了图像特有的归纳偏置。因此不需要我们对CV领域有什么了解,直接把图片当成是一个序列的图像块,就跟一个句子有很多单词一样。然后就可以把NLP领域的标准Transformer来做图像分类,当把VIT加上大规模的数据集时,模型的性能表现出奇的好。
    在这里插入图片描述
  • VIT的模型设置是尽可能地按照最原始的Transformer的结构来设计,这样做的好处是可以直接把NLP中高效的模块部分,直接拿过来用
  • VIT的流程如下:
    1. 先将输入图片分块,假设输入图片为 3 * 224 * 224 的尺寸,分成尺寸为 16 * 16 的块,那么可以得到196个块,每个块拉直后的尺寸为 3 * 16 * 16 = 768,3为通道数
    2. 将拉直后的块X,输入进全连接层E,E的尺寸为 768 * 768,后一个768为D,代表模型的大小可以改变,前一个768是每个块拉直后的尺寸不能改变,那么:X · E 的尺寸为196 * 768
    3. 类似于BERT,需要加入一个特殊字符 [ CLS ] 作为最后的分类输出,并且[ CLS ] 的位置信息为0,因为所有的输入块都在跟所有的输入块做注意力计算,所以我们假设第一个块 [ CLS ] 可以学到其他块的有用信息,那么可以只根据 [ CLS ] 的输出来做最后的分类判断即可,[ CLS ] 的尺寸为 1 * 768,所以整体输入的尺寸为 197 * 768
    4. 整体的输入还需要加上位置编码(这里为1D的可学习位置编码,类似BERT),由于是直接加上位置编码,所以整体的输入尺寸仍然为 197 * 768,即Embedded Patches的尺寸为 197 * 768
    5. 整体的输入先进入Layer Norm层,再进入Multi-Head Attention层,由于采用了多头(这里是12),所以每个头的K、Q、V的尺寸为 197 * 64,最后将这些头的输出拼接起来,最后的尺寸又变成197 * 768,再经过Layer Norm层,和MLP层,注意MLP一般会将输入的尺寸先放大再缩小,如这里先放大四倍变为 197 * 3072 ,再缩小投射回 197 * 768,最后就输出了
    6. 同时由于这个Transformer Encoder Block的输入尺寸等于输出尺寸,都是 197 * 768。所以可以直接叠加Block
    7. 在VIT用作分类任务时,直接将经过很多Encoder Block层的 [ CLS ] 当作VIT模型的最后输出,即整个图片的特征,然后添加一个MLP的分类头来实现分类任务
  • 在CNN中,我们做分类任务,并不是类似于BERT的做法,使用 [ CLS ]来作为图片整体的特征进行输出,而是通过对特征图进行全局平均池化,得到一个拉直的向量,再通过这个向量来做分类。这里VIT由于想尽可能地接近Transformer,所以采用了BERT的方法,但是使用传统CNN的方法,效果差不多

VIT挖的坑

  1. 由于VIT是做图片分类,但是Transformer不能只用来做图片分类,还有分割和检测任务,所以VIT-FRCNN(检测)、SETR(分割)在同年12月出现了
  2. 由于VIT使用的是有监督的训练方式,但是在NLP中大的Transformer模型,如BERT,使用的是自监督的训练方式,那么VIT可不可以也使用自监督的训练方式呢?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1634272.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

面试笔记——线程池

线程池的核心参数&#xff08;原理&#xff09; public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler)corePoolSize …

2024年 Java 面试八股文——Redis篇

目录 1、介绍下Redis Redis有哪些数据类型 难度系数&#xff1a;⭐ 2、Redis提供了哪几种持久化方式 难度系数&#xff1a;⭐ 3、Redis为什么快 难度系数&#xff1a;⭐ 4、Redis为什么是单线程的 难度系数&#xff1a;⭐ 5、Redis服务器的的内存是多大…

RustGUI学习(iced)之小部件(三):如何使用下拉列表pick_list?

前言 本专栏是学习Rust的GUI库iced的合集,将介绍iced涉及的各个小部件分别介绍,最后会汇总为一个总的程序。 iced是RustGUI中比较强大的一个,目前处于发展中(即版本可能会改变),本专栏基于版本0.12.1. 概述 这是本专栏的第三篇,主要讲述下拉列表pick_list部件的使用,会…

c#创建新项目

确保已安装.NET Core SDK。&#xff08;visual studio installer中可安装&#xff09; cmd中先引用到文件夹目录下。 mkdir MyConsoleApp MyConsoleApp是项目文件夹的名字。 mkdir 是一个命令行工具&#xff0c;用于在文件系统中创建新的目录&#xff08;文件夹&#xff09;…

【YOLO改进】换遍IoU损失函数之DIoU Loss(基于MMYOLO)

DIoU损失函数 论文链接&#xff1a;https://arxiv.org/pdf/1911.08287 DIoU损失函数&#xff08;Distance Intersection over Union Loss&#xff09;是一种在目标检测任务中常用的损失函数&#xff0c;用于优化边界框的位置。这种损失函数是IoU损失函数的改进版&#xff0c;…

windows驱动开发-电源状态(二)

Modern Standby这个特性其实很难准确的讲清楚&#xff0c;因为它是一个系统行为不是驱动功能行为&#xff0c;应用层、功能驱动、系统总线、设备本身都有不同程度的参与&#xff0c;并且它属于否决性的&#xff0c;一个系统中&#xff0c;只要有一个设备不支持Modern Standby&a…

新手如何用Postman做接口自动化测试?

1、什么是自动化测试 把人对软件的测试行为转化为由机器执行测试行为的一种实践。 例如GUI自动化测试&#xff0c;模拟人去操作软件界面&#xff0c;把人从简单重复的劳动中解放出来&#xff0c;本质是用代码去测试另一段代码&#xff0c;属于一种软件开发工作&#xff0c;已…

Q02UCPU 三菱Q系列通用型QnUCPU模块20K步40ns

Q02UCPU 三菱Q系列通用型QnUCPU模块20K步40ns Q02UCPU外部连接, Q02UCPU可以用Q03UDVCPU替换。 Q02UCPU参数说明&#xff1a;输入输出2048点、I/O软元件点数8192、程序容量20K、基本处理速度40ns、程序内存80K、USB/RS232连接。 Q02UCPU图片 三菱通用型QnUCPU模块20K步Q02UCPU…

Linux实现简单进度条(附原理解释和动图效果)

1&#xff0c;行缓冲区 先看下面的代码和运行结果&#xff0c; #include<stdio.h> #include<unistd.h> int main() {printf("你好\n");sleep(3);return 0; }只是一个简单的打印“你好”然后休眠三秒&#xff0c;最后程序结束 再看下面的代码和运行结果…

LT6911UXE HDMI 2.0 至双端口 MIPI DSI/CSI,带音频 龙迅方案

1. 描述LT6911UXE 是一款高性能 HDMI2.0 至 MIPI DSI/CSI 转换器&#xff0c;适用于 VR、智能手机和显示应用。HDMI2.0 输入支持高达 6Gbps 的数据速率&#xff0c;可为4k60Hz视频提供足够的带宽。此外&#xff0c;数据解密还支持 HDCP2.3。对于 MIPI DSI / CSI 输出&#xff0…

Linux学习之Tcp与Udp

目录 UDP Udp协议的格式 UDP的传输特性 UDP的缓冲区 基于UDP的应用层协议 TCP协议 TCP的报文格式 1.ACK确认应答机制 2.超时重传 3.TCP的链接管理机制 为什么要三次握手呢&#xff1f; 理解TIME_WAIT状态 流量控制&#xff08;可靠性效率&#xff09; 滑动窗口 拥塞…

C++栈和队列模拟

栈和队列所用的容器默认都为deque&#xff0c;这种容器可以看作是一种vector和list的中间性能容器。 而deque虽然头插、尾插效率很好&#xff0c;且支持 [ ] 访问&#xff08;默认容器为它的原因&#xff09;&#xff0c;但是 他的缺点也很明显&#xff1a; 1.中间插入删除会…

【C++算法竞赛 · 图论】树

目录 前言 树 树的定义 树的相关概念 树的遍历 1 先序遍历 2 中序遍历 3 后序遍历 前言 前两篇文章&#xff08;【C算法竞赛 图论】图论基础、【C算法竞赛 图论】图的存储&#xff09;中&#xff0c;介绍了图的相关概念与存储&#xff0c;还不了解的可以去补补课。 …

【百度Apollo】探索自动驾驶:小白教学如何使用 Dreamview 播放数据包

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《linux深造日志》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 引入一、Dreamview 简介二、使用 Dreamview 具体步骤步骤一&#xff1a;进入 Apollo Docker 环境步骤二&#xff…

数学建模--图论最短路径基础

1.图的定义 学过数据结构或者离散数学的小伙伴们应该知道图的概念&#xff0c;我在这里简单的介绍一下&#xff1a; 图的概念和我们理解的是很不一样的&#xff0c;这里的图并不是我们的生活里面的图片&#xff0c;而是一种表示不同的数据之间的关系&#xff0c;例如这里的5个…

hive使用hplsql进行etl或其它数据加工

参照 https://cwiki.apache.org/confluence/pages/viewpage.action?pageId59690156 http://www.hplsql.org/doc Hive HPL/SQL&#xff0c;即Hive Hybrid Procedural SQL一个开源工具&#xff0c;它为hive实现了过程性的SQL功能&#xff0c;类似Oracle的PLSQL。从hive 2.0.0开…

电机控制系列模块解析(12)—— 过调制

一、过调制 电机控制中的过调制&#xff08;Overmodulation&#xff09;是指在实施脉宽调制&#xff08;PWM&#xff09;过程中&#xff0c;使调制指数&#xff08;调制深度&#xff09;超过常规线性调制区的极限&#xff0c;进入非线性调制区域。这一策略通常应用于诸如空间矢…

NIO(非阻塞I/O)和IO(阻塞I/O)详解

文章目录 一、NIO&#xff08;Non-blocking I/O&#xff0c;非阻塞I/O&#xff09;1、Channel&#xff08;通道&#xff09;与Buffer&#xff08;缓冲区&#xff09;1.1、使用ByteBuffer读取文件1.2、ByteBuffer 方法1.2、ByteBuffer 结构1.3、字符串与 ByteBuffer 互转1.4 Sca…

Android 音视频播放器 Demo(一)—— 视频解码与渲染

本篇作为 Android 音视频实战系列的第二篇文章&#xff0c;主要介绍视频解码与渲染过程。本系列文章目录如下&#xff1a; Android 音视频基础知识 Android 音视频播放器 Demo&#xff08;一&#xff09;—— 视频解码与渲染 Android 音视频播放器 Demo&#xff08;二&#xff…

数据结构-链表练习(面试题)

1&#xff0c;翻转一个单链表 建立变量cur指向第二个节点&#xff0c;curN指向cur.next&#xff0c;将第二个节点的next改为head&#xff0c;headcur这样实现&#xff0c;前两个节点顺序的翻转&#xff0c;第二个节点指向了第一个节点&#xff0c;之后cur向后移&#xff08;cu…