Llama 3 安装使用方法

news2024/11/28 4:41:13

Llama3简介:

llama3是一种自回归语言模型,采用了transformer架构,目前开源了8b和70b参数的预训练和指令微调模型,400b正在训练中,性能非常强悍,并且在15万亿个标记的公开数据进行了预训练,比llama2大了7倍,距离llama2的开源发布仅仅过去了10个月,llama3就强势发布,一起来看一下他的使用方法。

在这里我经过查询Meta公布的4月15日的基准测试结果,Llama 3 400B+模型的表现已经持平Claude 3 Opus,超过Gemini 1.5 Pro,仅在数学部分落后于最先进的 GPT-4 Turbo 2024-04-09模型。
在这里插入图片描述
作为一个优秀团队的开源模型,我们更重要的是知道如何使用它,来减轻我们的负担,提升我们学习,完成任务,创作内容的效率与准确率。

Llama3安装:

git clone 安装

Llama3的git地址是 https://github.com/meta-llama/llama3 ,可以直接git克隆到本地

git clone https://github.com/meta-llama/llama3

然后在根目录运行

pip install -e .

去metallama官网登录使用下载该模型 https://llama.meta.com/llama-downloads/
在这里插入图片描述

在这里插入图片描述

  1. 注册登录,您将得到一个电子邮件的网址下载模型。当你运行下载时,你需要这个网址,一旦你收到电子邮件,导航到你下载的骆驼存储库和运行下载。
  2. 确保授予下载的执行权限。
  3. 在此过程中,将提示您从邮件中输入URL。
  4. 不要使用"复制链接"选项,而是要确保从电子邮件中手动复制链接

本地运行

torchrun --nproc_per_node 1 example_chat_completion.py \
    --ckpt_dir Meta-Llama-3-8B-Instruct/ \
    --tokenizer_path Meta-Llama-3-8B-Instruct/tokenizer.model \
    --max_seq_len 512 --max_batch_size 6

注意事项:

  1. 替换 Meta-Llama-3-8B-Instruct/ 你的检查站目录的路径Meta-Llama-3-8B-Instruct/tokenizer.model 找到了你的标记器模型.
  2. …–nproc_per_node 我们应该把它放在你所使用的模型的价值。
  3. 调整max_seq_len 和max_batch_size 必要时参数.
  4. 这个例子运行了 example_chat_completion.py 在这个存储库中找到,但是你可以将它更改为不同的文件。
  5. 根据你本身的硬件来调整max_seq_len 和max_batch_size参数

huggingface 平台下载

可以通过huggingface 平台下载(需要先进入huggingface平台申请,同意它的条款,)
在这里插入图片描述
在这里插入图片描述

然后先安装huggingface工具

pip install huggingface-hub

然后指定meta-llama/Meta-Llama-3-8B-Instruct

huggingface-cli download meta-llama/Meta-Llama-3-8B-Instruct --include “original/*” --local-dir meta-llama/Meta-Llama-3-8B-Instruct

然后transformer的使用

import transformers
import torch
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
pipeline = transformers.pipeline(
  "text-generation",
  model="meta-llama/Meta-Llama-3-8B-Instruct",
  model_kwargs={"torch_dtype": torch.bfloat16},
  device="cuda", 
)

如果没有gpu的同学可以使用cpu device=cuda,计算性能会差一些

完整的使用方式:

import transformers
import torch
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)
messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
)
terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
    prompt,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])

基于ollama使用:

目前推荐使用ollama的8b,70b,instruct, text 其他量化模型是别的用户微调过的,建议使用原生的llama3.
执行:

ollama run llama3:instruct

或者

ollama run llama3  (ollama pull llama3:8b)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
测试llama3的生成速度非常快,至少是llama2的两倍,如果有强大的显存支持效率会更高。

总结

llama3在llama2的基础上实现了质的飞跃,已经超过chat3.5的性能,并且他的预训练和微调是目前市面上开源的参数规模最好的,不仅是对于开发者还有企业使用者,这都是非常合适的一个模型。

下表显示了我们的评估结果与Claude Sonnet、Mistral Medium和GPT-3.5相比,在这些类别和提示上的汇总结果
在这里插入图片描述
在未来的大模型道路上,选择最优秀的模型往往是我们第一步需要考虑的事情。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1631596.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java设计模式 _结构型模式_桥接模式

一、桥接模式 1、桥接模式 桥接模式&#xff08;Bridge Pattern&#xff09;是一种结构型设计模式。用于把一个类中多个维度的抽象化与实现化解耦&#xff0c;使得二者可以独立变化。 2、实现思路 使用桥接模式&#xff0c;一定要找到这个类中两个变化的维度&#xff1a;如支…

什么是中间件?中间件有哪些?

什么是中间件&#xff1f; 中间件&#xff08;Middleware&#xff09;是指在客户端和服务器之间的一层软件组件&#xff0c;用于处理请求和响应的过程。 中间件是指介于两个不同系统之间的软件组件&#xff0c;它可以在两个系统之间传递、处理、转换数据&#xff0c;以达到协…

[论文笔记]GAUSSIAN ERROR LINEAR UNITS (GELUS)

引言 今天来看一下GELU的原始论文。 作者提出了GELU(Gaussian Error Linear Unit,高斯误差线性单元)非线性激活函数&#xff1a; GELU x Φ ( x ) \text{GELU} x\Phi(x) GELUxΦ(x)&#xff0c;其中 Φ ( x ) \Phi(x) Φ(x)​是标准高斯累积分布函数。与ReLU激活函数通过输入…

Spring Web MVC入门(3)——响应

目录 一、返回静态页面 RestController 和 Controller之间的关联和区别 二、返回数据ResponseBody ResponseBody作用在类和方法的情况 三、返回HTML代码片段 响应中的Content-Type常见的取值&#xff1a; 四、返回JSON 五、设置状态码 六、设置Header 1、设置Content…

docker如何生成springboot镜像

1、在springboot的jar包所在的目录下创建Dockerfile文件&#xff0c;此案例的目录为/usr/java Dockerfile的文件内容如下&#xff1a; FROM openjdk:8 LABEL author"zengyanhui" LABEL email"1181159889qq.com" WORKDIR /usr/java/springbootdemo COPY s…

动漫渐显引导页HTML5单页源码

挺不错的动漫渐显引导页&#xff0c;记事本右键打开即可修改~ 动漫渐显引导页HTML5单页源码

重生之我是Nginx服务专家

nginx服务访问页面白色 问题描述 访问一个域名服务返回页面空白&#xff0c;非响应404。报错如下图。 排查问题 域名解析正常&#xff0c;网络通讯正常&#xff0c;绕过解析地址访问源站IP地址端口访问正常&#xff0c;nginx无异常报错。 在打开文件时&#xff0c;发现无法…

179. 最大数(LeetCode)

文章目录 前言一、题目讲解二、算法原理三、代码编写1.仿函数写法2.lambda表达式 四、验证五.总结 前言 在本篇文章中&#xff0c;我们将会带着大家采用贪心的方法解决LeetCode中最大数这道问题&#xff01;&#xff01;&#xff01; 一、题目讲解 一组非负整数&#xff0c;包…

机器学习的指标评价

之前在学校的小发明制作中&#xff0c;在终期答辩的时候&#xff0c;虽然整个项目的流程都答的很流畅。 在老师提问的过程中&#xff0c;当老师问我recall,precision,accuracy等指标是如何计算的&#xff0c;又能够表示模型的哪方面指标做得好。我听到这个问题的时候&#xff…

信息系统项目管理师0076:应用集成(5信息系统工程—5.3系统集成—5.3.5应用集成)

点击查看专栏目录 文章目录 5.3.5应用集成5.3.5应用集成 随着网络和互联网的发展以及分布式系统的日益流行,大量异构网络及各计算机厂商推出的软、硬件产品分布在分布式系统的各层次(如硬件平台、操作系统、网络协议、计算机应用),乃至不同的网络体系结构上都广泛存在着互操…

10.通用定时器

驱动电机 RGB LED亮度&#xff08;呼吸灯&#xff09; 舵机&#xff08;遥控车、机械臂&#xff09; 通用定时器作用 1.延时 2.定时器更新中断 3.输出比较&#xff08;PWM波、驱动IO输出波形&#xff08;脉冲&#xff09;&#xff09; 4.输入捕获&…

VMware安装ubuntun虚拟机使用桥接模式无法上网问题解决

问题&#xff1a;最近准备使用VMware虚拟机搭建k8s集群服务&#xff0c;因为需要在同一个网段下&#xff0c;我使用桥接的方式&#xff0c;我发现主机在使用有线连接时虚拟机网络连接正常&#xff0c;但是使用无线网就显示连接不上网络。 解决方法 一、查看网络连接&#xff…

Codeforces Round 941 (Div. 2)(A-D)

A. Card Exchange&#xff08;思维 Problem - A - Codeforces 题目大意&#xff1a; 给定n张牌&#xff0c;每次选k张相同的牌&#xff0c;把他们变成k-1张任意的牌&#xff0c;求最后手中最少能有几张牌。 思路&#xff1a; 直接判断这n张牌当中有没有k张一样的牌&#xff0c…

Python快速入门1数据类型(需要具有编程基础)

数据类型&#xff1a; Python 3.0版本中常见的数据类型有六种&#xff1a; 不可变数据类型可变数据类型Number&#xff08;数字&#xff09;List&#xff08;列表&#xff09;String&#xff08;字符串&#xff09;Dictionary&#xff08;字典&#xff09;Tuple&#xff08;元…

NLP transformers - 文本分类

Text classification 文章目录 Text classification加载 IMDb 数据集Preprocess 预处理EvaluateTrainInference 本文翻译自&#xff1a;Text classification https://huggingface.co/docs/transformers/tasks/sequence_classification notebook : https://colab.research.googl…

明日周刊-第8期

现在露营的人越来越多了&#xff0c;都是带着帐篷或者遮阳篷聚在一起喝喝茶聊聊天&#xff0c;这是一种很好的放松方式。最近我养了一只金毛&#xff0c;目前两个月大&#xff0c;非常可爱。 文章目录 一周热点资源分享言论歌曲推荐 一周热点 一、人工智能领域 本周&#xff…

Java面试八股之main方法的参数中字符串数组的第一个元素是什么

Java main方法的参数中字符串数组的第一个元素是什么 Java main 方法的参数中字符串数组的第一个参数通常是指命令行启动Java应用程序时传递给该程序的第一个命令行参数。当您在命令行中执行一个Java应用程序&#xff0c;可以跟随类名后面附加一系列参数&#xff0c;这些参数将…

Debian 系统设置SSH 连接时长

问题现象&#xff1a; 通过finalshell工具连接Debian系统远程操作时&#xff0c;总是一下断开一下断开&#xff0c;要反复重新连接 &#xff0c;烦人&#xff01; 解决办法&#xff1a; 找到ssh安装目录下的配置文件&#xff1a;sshd_config vi sshd_config &#xff1a; 找到…

李沐70_bert微调——自学笔记

微调BERT 1.BERT滴哦每一个词元返回抽取了上下文信息的特征向量 2.不同的任务使用不同的特性 句子分类 将cls对应的向量输入到全连接层分类 命名实体识别 1.识别应该词元是不是命名实体&#xff0c;例如人名、机构、位置 2.将非特殊词元放进全连接层分类 问题回答 1.给…

Android --- 常见UI组件

TextView 文本视图 设置字体大小&#xff1a;android:textSize"20sp" 用sp 设置颜色&#xff1a;android:textColor"#00ffff" 设置倍距(行距)&#xff1a;android:lineSpacingMultiplier"2" 设置具体行距&#xff1a;android:lineSpacingExtra&q…