人工智能|推荐系统——推荐大模型最新进展

news2025/1/24 2:31:29

近年来,大语言模型的兴起为推荐系统的发展带来了新的机遇。这些模型以其强大的自然语言处理能力和丰富的知识表示,为理解和生成复杂的用户-物品交互提供了新的视角。本篇文章介绍了当前利用大型语言模型进行推荐系统研究的几个关键方向,包括嵌入空间的解释性、个性化推荐的知识对齐、端到端推荐框架的构建,以及基于GPT训练范式的顺序推荐模型等。这些研究不仅推动了推荐系统在技术上的创新,也为理解和改进推荐系统提供了新的理论和实践基础。

LLMRec相关

一、研究1

1.1 论文题目

Demystifying Embedding Spaces Using Large Language Models

1.2 摘要

Embedding 已成为表示关于实体、概念和关联的复杂的信息的关键手段,并以简洁且有用的格式呈现。然而,它们通常难以直接进行解释。尽管下游任务利用这些压缩表示,但要进行有意义的解释通常需要使用降维或专门的机器学习可解释性方法进行可视化。本文解决了使这些嵌入更具解释性和广泛实用性的挑战,通过利用大语言模型(LLMs)直接与嵌入进行交互,将抽象向量转化为可理解的叙述。通过将嵌入注入LLMs,我们使复杂的嵌入数据可以进行查询和探索。我们在各种不同任务上展示了我们的方法,包括 enhancing concept activation vectors (CAVs), communicating novel embedded entities, and decoding user preferences in recommender systems。我们的工作将嵌入的巨大信息潜力与LLMs的解释能力相结合。

1.3 内容概述

物品的embedding是对于物品信息的抽象表示,例如在推荐系统领域中,物品的embeddings可能隐含着关于其质量、可用性、设计、客户满意度等复杂细节,但理解这些抽象表示仍然非常困难。这篇论文提出利用大语言模型的来帮助理解物品的embedding信息。同时作者在文中指出,利用LLMs来进行embedding解释,可以描述embedding space中的一些特定点,即使这些特定点可能并不对应真实物品。例如图2所示,LLMs可以完成为embedding space中一些虚构点提供描述、观看理由等任务。具体而言,该论文提出了一种名为ELM(Embedding Language Model)的框架,利用大型语言模型(LLMs)解释领域嵌入,使用训练好的adapter将领域嵌入向量整合到LLM的Token embedding space中。开发了一种训练方法,用于微调预训练的LLMs以解释领域嵌入。

1.4 推荐理由

该文章提供了一个清晰直观的框架,利用大语言模型强大的能力来提供对物品embedding space的解释。这种想法是比较有启发性的,例如在一些生成式推荐框架中,很多时候并不直接生成推荐结果,那么在映射到真实物品空间中之前,也可以考虑使用这样的embedding解释技术来对生成结果进行分析。同时文中生成对embedding的解释也包含多个方面,例如推荐/不推荐理由、可能喜欢该物品的用户群体、物品描述等,也有助于该工作应用在不同的推荐场景下。值得一提的是,该工作的部分训练数据也是由LLMs生成的,这一方面降低了模型的数据收集成本,但另一方面这可能也让人对该模型在真实场景下的能力抱有疑问。总而言之,该工作为如何利用LLMs来理解embedding空间提供了新的思路。

二、研究2

2.1 论文题目

Exact and Efficient Unlearning for Large Language Model-based Recommendation

2.2 摘要

大型语言模型推荐(LLMRec)的不断发展通过使用推荐数据对大型语言模型(LLMs)进行参数高效微调(PEFT)来实现定制化。然而,将用户数据纳入LLMs会引发隐私问题,因此需要有效的遗忘过程来从已建立的LLMRec模型中删除无用数据(例如历史行为)。现有的遗忘方法对LLMRec来说不够有效,主要是因为计算成本高或无法完全擦除数据。在本研究中,我们介绍了适配

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1630258.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

电脑黑屏问题的4种解决方法,两分钟轻松掌握

电脑黑屏是一种让人不安的问题,这个问题可能是由多种原因引起的。在这个数字化的时代,电脑已经成为我们工作和娱乐中不可或缺的一部分。当电脑突然陷入黑屏状态,用户通常会感到困扰和焦虑。本文将介绍一些常见的电脑黑屏问题解决方法&#xf…

微服务之并行与分布式计算

一、概述 1.1集中式系统vs分布式系统 集中式系统 集中式系统完全依赖于一台大型的中心计算机的处理能力,这台中心计算机称为主机(Host 或 mainframe ),与中心计算机相连的终端设备具有各不相同非常低的计算能力。实际上大多数终…

注意力机制、self attention、target attention、双层attention

关于注意力机制要解决2个问题,一是怎么做在哪个层面上做,二是注意力系数如何得到,由谁产出。注意力机制应用广泛的本质原因是求和的普遍存在,只要是有求和的地方加权和就有用武之地。DIN/DIEN把注意力机制用在用户行为序列建模是为…

校园综合服务平台

码功能强大,ui 精美, 功能包含但不限于校园跑腿,外卖,组局,圈子,商城,抽奖,投票,团购,二手市场,签到,积分商城,一元购等&a…

Linux驱动开发:深入理解I2C时序

目录标题 I2C简介I2C时序关键点Linux内核中的I2C时序处理I2C适配器I2C算法I2C核心 代码示例:I2C设备访问调试I2C时序问题 在Linux驱动开发中,理解和正确处理I2C时序对于确保I2C设备正常工作至关重要。本文将详细介绍I2C通信协议的时序特征,并…

企业的核心竞争力,是有效制作电子说明书

在这个信息化的时代,各种产品和服务层出不穷,数不胜数。要想在众多竞争对手中脱颖而出,除了产品质量之外,还有很多因素。比如营销手段、价格优势或者是品牌效应。但今天我要说的,是一个可能容易被人忽视的一个关键点—…

[嵌入式系统-53]:嵌入式系统集成开发环境大全

目录 一、嵌入式系统集成开发环境分类 二、由MCU芯片厂家提供的集成开发工具 三、由嵌入式操作提供的集成开发工具 四、由第三方工具厂家提供的集成开发工具 一、嵌入式系统集成开发环境分类 嵌入式系统集成开发工具和集成开发环境可以按照不同的分类方式进行划分&#xff…

SecretFlow学习指南(2)学习路径

目录 一、模块架构 二、模块详解 三、算法协议 四、学习路线 一、模块架构 良好的分层设计可以提高开发效率和可维护性,满足不同用户的需求。隐语从上到下一共分为六层。 ●产品层:通过白屏化产品提供隐语整体隐私计算能力的输出,让用户简…

Vue2和Vue3的生命周期对比

beforeCreate 、created 两个钩子被setup()钩子来替代。 所有生命周期前面加了on

LeetCode 2385.感染二叉树需要的总时间:两次搜索(深搜 + 广搜)

【LetMeFly】2385.感染二叉树需要的总时间:两次搜索(深搜 广搜) 力扣题目链接:https://leetcode.cn/problems/amount-of-time-for-binary-tree-to-be-infected/ 给你一棵二叉树的根节点 root ,二叉树中节点的值 互不…

vite创建vue项目启动时域名为127.0.0.1修改为localhost不生效——问题解决

今天偶然间想起来年前整的一套vue3的框架,索性跑了一下,结果发现运行后地址为127.0.0.1而非localhost,所以想把域名改一下 找到vite.config.js文件中的export default defineConfig,在server中写入host:localhost 然后通过npm ru…

【Canvas与艺术】绘制美国星条旗

【成图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>使用HTML5/Canvas绘制美国星条旗</title><style type"…

Redis分区指南:如何实现高可用与扩展性

大家好!我是你们的技术小伙伴小米~今天我们要聊一聊Redis分区容错问题中的数据分区这个话题。在大数据量的应用中,合理的数据分区是至关重要的。我们会从Hash、一致性Hash、Codis的Hash槽以及RedisCluster四个方面来探讨。快来一起学习吧! Hash:基础但不稳定 在Redis的分…

力扣HOT100 - 78. 子集

解题思路&#xff1a; class Solution {public List<List<Integer>> subsets(int[] nums) {List<List<Integer>> lists new ArrayList<>(); // 解集lists.add(new ArrayList<Integer>()); // 首先将空集加入解集中for(int i 0; i < n…

极简shell制作

&#x1f30e;自定义简单shell制作 &#xff08;ps: 文末有完整代码&#xff09; 文章目录&#xff1a; 自定义简单shell制作 简单配置Linux文件 自定义Shell编写 命令行解释器       获取输入的命令       字符串分割       子进程进行进程替换 内建命令…

商品计划在服装品牌供应链管理中的突出地位

在服装行业中&#xff0c;商品计划是供应链管理的核心&#xff0c;它影响着产品的设计、生产、分销和销售。一个精准的商品计划能够使品牌在竞争激烈的市场中保持领先地位&#xff0c;同时满足消费者的需求和预期。 商品计划的定义与重要性 定义 商品计划是服装品牌基于市场趋…

梯度下降中学习率的调节与优化技巧

在深度学习和机器学习的世界中&#xff0c;梯度下降算法无疑占据了举足轻重的地位。作为优化算法的核心&#xff0c;梯度下降通过迭代的方式&#xff0c;不断调整模型的参数&#xff0c;以最小化损失函数&#xff0c;进而提升模型的预测性能。而在梯度下降的过程中&#xff0c;…

Linux红帽(RHCE)认证学习笔记-(1)Linux 文件管理

Linux 文件管理 1. Linux下的目录结构 / 是Linux里的根目录 Linux的一级目录 /boot &#xff1a;存放的是系统的启动配置⽂件和内核⽂件/dev &#xff1a;存放的是Linux的设备⽂件/etc&#xff1a;存放的是Linux下的配置文件/home&#xff1a;存放普通用户的家目录/media&am…

15天搭建ETF量化交易系统Day1—数据源模块

搭建过程 每个交易者都应该形成一套自己的交易系统。 很多交易者也清楚知道&#xff0c;搭建自己交易系统的重要性。现实中&#xff0c;从&#xff10;到&#xff11;往往是最难跨越的一步。 授人鱼不如授人以渔&#xff0c;为了帮助大家跨出搭建量化系统的第一步&#xff0c;我…

Edge浏览器新特性深度解析,写作ai免费软件

首先&#xff0c;这篇文章是基于笔尖AI写作进行文章创作的&#xff0c;喜欢的宝子&#xff0c;也可以去体验下&#xff0c;解放双手&#xff0c;上班直接摸鱼~ 按照惯例&#xff0c;先介绍下这款笔尖AI写作&#xff0c;宝子也可以直接下滑跳过看正文~ 笔尖Ai写作&#xff1a;…