【算法】人工蜂群算法,解决多目标车间调度问题,柔性车间调度问题

news2025/1/18 10:03:40

文章目录

  • 复现论文
  • 什么是柔性作业车间调度问题?
  • 数据处理
  • ABC算法
    • 编码解码
    • 种群初始化
    • 雇佣蜂操作
      • IPOX交叉
      • 多点交叉
    • 观察蜂操作
    • 侦察蜂操作
    • 算法流程
  • 结果
  • 程序截图
  • 问询、帮助

复现论文

在这里插入图片描述

什么是柔性作业车间调度问题?

也叫多目标车间调度问题。

柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,简称FJSP)是传统作业车间调度问题的一种扩展。在传统的作业车间调度问题中,每个工件的每个工序只能在指定的一台机器上加工。而在柔性作业车间调度问题中,突破了这种资源唯一性的限制,允许每个工件的每个工序在多台不同的机器上加工,且这些机器上的加工时间可能不同。

这种灵活性使得作业车间调度问题更加贴合实际生产情况,因为实际生产中,同一道工序可能由不同的机器完成,不同的机器完成同一工序的时间和成本也可能有所差异。因此,FJSP 考虑了更多的生产实际,其目标通常是最小化最大完工时间(makespan),即所有工件中最后一个完工的工件的完成时间。

柔性作业车间调度问题的复杂性较高,因为它不仅要考虑工序的加工顺序,还要考虑不同机器上的加工时间差异,以及可能的机器选择问题。这些问题的组合导致了庞大的搜索空间,使得找到最优解或近似最优解成为一个具有挑战性的优化问题。

在数据集中,有10个待加工的工件,每一行就是一个工件。

下图是数据集截图,表示是,工件0一共有6个工序。后面数字是21534,表示第一道工序可选机器有2个,选择机器1花费时间为5可以完成这个工序的加工,选择机器3花费时间为4可以完成这个工序的加工。后面3533521是一组,表示第二个工序可选机器有3个,选择机器1花费时间为5可以完成这个工序的加工,选择机器3花费时间为4可以完成这个工序的加工,选择机器3花费时间为4可以完成这个工序的加工
在这里插入图片描述

全部数据集如下:

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34
6,2,1,5,3,4,3,5,3,3,5,2,1,2,3,4,6,2,3,6,5,2,6.0,1.0,1.0,1.0,3.0,1.0,3.0,6.0,6.0,3.0,6.0,4.0,3.0
5,1,2,6,1,3,1,1,1,2,2,2,6,4,6,3,6,5,2,6,1,1,,,,,,,,,,,,,
5,1,2,6,2,3,4,6,2,3,6,5,2,6,1,1,3,3,4,2,6,6,6.0,2.0,1.0,1.0,5.0,5.0,,,,,,,
5,3,6,5,2,6,1,1,1,2,6,1,3,1,3,5,3,3,5,2,1,2,3.0,4.0,6.0,2.0,,,,,,,,,
6,3,5,3,3,5,2,1,3,6,5,2,6,1,1,1,2,6,2,1,5,3,4.0,2.0,2.0,6.0,4.0,6.0,3.0,3.0,4.0,2.0,6.0,6.0,6.0
6,2,3,4,6,2,1,1,2,3,3,4,2,6,6,6,1,2,6,3,6,5,2.0,6.0,1.0,1.0,2.0,1.0,3.0,4.0,2.0,,,,
5,1,6,1,2,1,3,4,2,3,3,4,2,6,6,6,3,2,6,5,1,1,6.0,1.0,3.0,1.0,,,,,,,,,
5,2,3,4,6,2,3,3,4,2,6,6,6,3,6,5,2,6,1,1,1,2,6.0,2.0,2.0,6.0,4.0,6.0,,,,,,,
6,1,6,1,2,1,1,5,5,3,6,6,3,6,4,3,1,1,2,3,3,4,2.0,6.0,6.0,6.0,2.0,2.0,6.0,4.0,6.0,,,,
6,2,3,4,6,2,3,3,4,2,6,6,6,3,5,3,3,5,2,1,1,6,1.0,2.0,2.0,6.0,4.0,6.0,2.0,1.0,3.0,4.0,2.0,,

最终目标是要求加工完所有工件所需要的最小时间:

在这里插入图片描述

数据处理

10种类型的工件要加工,一共有6台机器:

da = data_deal(10, 6)

读取数据,解析数据:

Tmachine, Tmachinetime, tdx, work, tom, machines = da.cacu() 

Tmachine 一行就是一个工件可以选择的机器。不足长度的补充0。
在这里插入图片描述
Tmachinetime和Tmachine 同样形状,表示每个机器对应需要多少时间:
在这里插入图片描述
tdx表示每个工序可选的机器数量,比如第一个零件的第一个工序可以选择2台机器加工。而且tdx[0]的长度表示了零件0需要有6个工序才能加工完成。
在这里插入图片描述

ABC算法

ABC(Artificial Bee Colony)算法是一种启发式优化算法,模拟了蜜蜂在寻找食物过程中的行为。这个算法由三种类型的蜜蜂组成:雇佣蜂、观察蜂和侦查蜂。

  1. 雇佣蜂:雇佣蜂负责在已知的蜜源周围搜索,它们相当于解决问题的候选解。每个蜜源都对应一个雇佣蜂,它们具有记忆功能,能够存储搜索到的蜜源信息,并根据蜜源的好坏与观察蜂分享信息。

  2. 观察蜂:观察蜂接收雇佣蜂分享的蜜源信息,并选择其中满意的蜜源进行跟随。观察蜂的数量与雇佣蜂相等。

  3. 侦查蜂:侦查蜂负责搜索新的蜜源位置,以保持算法的多样性和全局搜索能力。

这三种蜜蜂之间可以相互转换,以达到更好的搜索效果。ABC 算法通过模拟蜜蜂群体的这种协作和信息共享机制,实现了对优化问题的求解。

在这里插入图片描述

编码解码

ABC算法是一种启发式优化算法,最初用于处理连续解空间的问题。然而,在柔性作业车间调度这种离散问题中,标准的ABC算法并不直接适用。因此,我们需要对问题进行适当的编码和解码。

针对柔性作业车间调度问题,我们采用双层编码的形式:

  1. 工序串编码:这一层编码用于确定工序的加工顺序。比如,考虑一个工序串[3 1 2 1 2 2],它表示了不同工件的工序顺序。在这个串中,数字代表工件号,数字出现的次数表示该工件有多少个工序。比如,在串中的第一个数字3表示工件3的第一个工序,第一个数字1表示工件1的第一个工序。因此,工序串的加工顺序为:O31 → O11 → O21 → O12 → O22 → O23。

  2. 机器串编码:这一层编码表示每个工序选择的机器。比如,机器串编码[2 2 1 1 3 3]表示了每个工序选择的机器编号。在这个串中,数字代表机器编号,按工件序号和工序顺序排列。比如,在串中的第一个位置的数字2表示工序O11选择了机器M2进行加工,第五个位置的数字1表示工序O23选择了机器M1进行加工。

通过这样的双层编码,我们可以将柔性作业车间调度问题转化为一个适合ABC算法处理的问题。

在代码种,对应为:


class FJSP():
    def __init__(self, job_num, machine_num, P_GLR, parm_data, P_MSR):
        self.job_num = job_num  # 工件数
        self.machine_num = machine_num  # 机器数
        self.p1 = P_GLR[0]  # 全局选择的概率
        self.p2 = P_GLR[1]  # 局部选择的概率
        self.Tmachine, self.Tmachinetime, self.tdx, self.work, self.tom = parm_data[0], parm_data[1], parm_data[2], \
            parm_data[3], parm_data[4]
        self.machines = parm_data[5]
        self.p3 = P_MSR[0]  # 剩余负荷最大规则的概率
        self.p4 = P_MSR[1]  # 加工时间最短的概率

    def creat_Machine(self):
        job = np.copy(self.work)
        Ma_time = np.zeros((self.job_num,))
        machine, machine_time = [], []  # 初始化矩阵
        a_global = np.zeros((1, self.machine_num))
        r = np.random.rand()
        for i in range(self.job_num):
            a_part = np.zeros((1, self.machine_num))
            time = 0
            for j in range(self.machines[i]):
                highs = self.tom[i][j]
                lows = self.tom[i][j] - self.tdx[i][j]
                n_machine = self.Tmachine[i, lows:highs].tolist()
                n_time = self.Tmachinetime[i, lows:highs].tolist()
                index_select = []
                if r < self.p1 or r > 1 - self.p2:
                    for k in range(len(n_machine)):
                        m = int(n_machine[k]) - 1
                        index_select.append(m)
                        t = n_time[k]
                        a_global[0, m] += t  # 全局负荷计算
                        a_part[0, m] += t  # 局部负荷计算

                    if r < self.p1:  # 全局选择
                        select = a_global[:, index_select]
                        idx_select = np.argmin(select[0])
                    else:  # 局部选择
                        select = a_part[:, index_select]
                        idx_select = np.argmin(select[0])
                    m_select = n_machine[idx_select]
                    t_index = n_machine.index(m_select)
                    machine.append(m_select)
                    machine_time.append(n_time[t_index])
                    time += n_time[t_index]
                else:  # 否则随机挑选机器
                    index = np.random.randint(0, len(n_time), 1)
                    machine.append(n_machine[index[0]])
                    machine_time.append(n_time[index[0]])
                    time += n_time[index[0]]
            Ma_time[i] = time
        return machine, machine_time, Ma_time

    def creat_job(self):
        count = np.zeros((1, self.job_num), dtype=np.int_)
        machine, machine_time, Ma_time = self.creat_Machine()
        time_last = Ma_time.copy()
        rember = [sum(self.machines[:i]) for i in range(len(self.machines))]
        job = []
        for i in range(len(self.work)):
            r = np.random.rand()
            a = np.argwhere(time_last > 0)  # 挑选剩余工件加工时间大于0的索引

            if r < self.p3 + self.p4:  # 剩余负荷最大规则和加工时间最短优先规则
                b = time_last[a].reshape(a.shape[0], ).tolist()  # 按照索引取出具体工件的加工时间
                if r < self.p3:  # 剩余负荷最大规则
                    a_index = b.index(max(b))
                    jobb = int(a[a_index, 0])
                    job.append(jobb)
                else:  # 加工时间最短优先规则
                    a_index = b.index(min(b))
                    jobb = int(a[a_index, 0])
                    job.append(jobb)
            else:  # 随机选择规则
                index = np.random.randint(0, a.shape[0], 1)
                jobb = int(a[index, 0])
                job.append(jobb)
            loc = count[0, jobb]
            loc1 = rember[jobb] + loc
            time = machine_time[loc1]
            time_last[jobb] -= time  # 更新剩余工件加工时间
            count[0, jobb] += 1
        return job, machine, machine_time

种群初始化

种群初始化对于算法的性能至关重要。如果完全随机生成初始种群,那么初始解的质量可能参差不齐,这会影响算法寻找最优解的速度,可能需要增加迭代次数和种群大小来获得更好的结果,这会增加优化时间。为了解决这个问题,我们采用了随机选择和按规则选择相结合的方法来初始化种群。

在机器串编码中,我们采用了三种初始化规则:全局选择(Global Selection,GS)、局部选择(Local Selection,LS)和随机选择(Random Selection,RS)。GS和LS可以平衡每台机器的负载,提高机器利用率,从而在一定程度上减小初始解的最大完工时间。而具有强随机性的RS可以保证初始解的多样性,能够取得解空间中的任意解。

在工序串编码中,我们采用了三种初始化规则:剩余负荷最大规则(Maximum Residual Load,MRL)、加工时间最短优先规则(Shortest Process Time,SPT)和随机选择(Random Selection,RS)。MRL优先处理剩余加工时间最长的工件,SPT优先处理剩余加工时间最短的工件,而RS则随机选择工序进行排序。

为了更好地平衡这些规则的应用,我们对机器串和工序串生成规则进行了概率分配。具体来说,机器串生成规则GS/LS/RS的选择概率分别为30%、30%和40%,而工序串的生成规则MRL/SPT/RS的选择概率也分别为30%、30%和40%。

这样的概率分配旨在保证算法能够在初始阶段充分利用规则性和随机性,从而获得多样性的初始种群,有利于提高算法的搜索效率和收敛性。

雇佣蜂操作

针对柔性作业车间调度问题,我们对传统的雇佣蜂操作进行了改进,采用了两种交叉方法:IPOX交叉和多点交叉。

IPOX交叉

在IPOX交叉中,我们首先从种群中选择一条工序串作为父代X1,并生成一个0到1之间的随机数。如果随机数小于0.5,则选择全局最优解作为X2;否则,从种群中选择另一条工序串作为X2(但不同于X1)。接下来,我们将工件分为两个互补的工件集R1和R2。然后,我们将X1中包含在R1工件集中的工序号按照在X1中的位置复制到子代C1中,并将X2中包含在R2工件集中的工序按照原顺序插入到C1的空缺处。类似地,我们将X2中包含在R2工件集中的工序号复制到子代C2中,并将X1中包含在R1工件集中的工序按照原顺序插入到C2的空缺处。最后,我们计算子代C1和C2的适应度值,选择适应度值较大的子代作为交叉后的子代,并检查是否需要替换父代X1的适应度值。

多点交叉

多点交叉作用于机器串的交叉操作。首先,我们选择与父代X1工序串对应的机器串作为机器串父代P1,并选择与父代X2工序串对应的机器串作为机器串父代P2。然后,我们随机生成一个由0和1组成的与机器串长度相等的二进制串。接着,我们将P1中与二进制串中与1位置相同的机器号复制到子代S1的相同位置,并将P2中与二进制串中与0位置相同的机器号复制到S1的相同位置。然后,我们将P2中与二进制串中与1位置相同的机器号复制到子代S2的相同位置,并将P1中与二进制串中与0位置相同的机器号复制到S2的相同位置。最后,我们计算子代S1和S2的适应度值,选择适应度值较大的作为机器串多点交叉后的子代,并检查是否需要替换父代P1的适应度值。

这两种交叉方法不会产生非法解,同时能够将父代个体中的优良基因传递到下一代,从而帮助改进解的质量和收敛速度。

观察蜂操作

  1. 蜜蜂觅食行为

    • 蜜蜂使用轮盘赌选择蜜源的位置,选择概率与蜜源的适应度值成正比。适应度值高的蜜源被选中的概率更大。
    • 选择概率的计算使用公式(10),其中fit_w是第w个解的适应度值,D是蜜源的数量,即种群数量的一半。
    • 蜜源的适应度值按照公式(12)计算,其中obj_w是蜜源w的目标值。
  2. 工序串优化

    • 采用变换步长策略对选择的蜜源位置附近进行搜索。大步长交换可行解中多对工序的顺序,增强全局搜索能力,避免陷入局部最优;小步长交换可行解中一对工序的顺序,适合在当前解空间进行更深一步的搜索。
    • 为了结合大步长和小步长的优势,设定了一个阈值,当搜索次数小于阈值时进行小步长搜索,反之进行大步长搜索,并在切换时将搜索次数清零。
    • 在计算适应度值时,采用贪婪策略选择适应度高的个体,以保留精英个体。
    • 对工序串进行插入变异时,从工序串中选择任意一道工序插入到工序串的任意位置,然后按照原有顺序排序,并计算适应度值。同样地,对机器串进行变异操作时,随机选择一道工序,在其可选机器集中随机选择一台机器进行变异,并计算适应度值。最后,采用贪婪策略选择适应度高的染色体保留到下一代种群中。

侦察蜂操作

在标准的ABC算法中,如果雇佣蜂在同一个蜜源上进行了limit次(即达到最大搜索次数)而没有改进,那么它就会转变为侦查蜂。在传统ABC算法中,每次只有一只雇佣蜂会被转变为侦查蜂,而侦查蜂生成的随机解对种群的改进影响较小,不利于算法跳出局部最优解。

因此,在这里提出了一种改进的方法:如果有Y个蜜源经过limit次搜索没有改进,那么就采用种群初始化方法(来自文中第2.2节)生成Y个新的蜜源。通过增加侦查蜂的数量,保持种群的多样性,这有助于提高算法的全局搜索能力。

具体来说,当Y个蜜源达到搜索次数上限时,会生成Y个新的蜜源,以增加算法的搜索空间,从而提高发现更好解的可能性,增强算法的全局搜索能力。

算法流程

  1. 建立柔性作业车间调度模型。
  2. 确定调度的约束条件。
  3. 初始化种群以及设置参数。
  4. 计算适应度值,雇佣蜂进行 IPOX 交叉和多点交叉操作。
  5. 计算各蜜源的适应度值,并且计算观察蜂选择跟随各雇佣蜂的概率。
  6. 观察蜂采用变步长搜索策略,并且进行变异操作。
  7. 判断蜜源是否达到最大搜索次数,若满足条件则雇佣蜂转换为侦查蜂,搜索新的蜜源,否则进入步骤 8。
  8. 判断算法是否达到最大迭代次数,如果是则算法结束;如果未达到最大迭代次数,则跳转到步骤 4。

在这里插入图片描述

结果

计算这个问题,设置了50轮的答案搜索,完工时间由大变小,体现出算法寻找最优解的变化,整体是收敛的。

在这里插入图片描述

从甘特图种可以看出6台机器如何分配才能达到最优最短的完工时间,比如可以看到机器M1的加工顺序是零件4、零件4、等等。总的完工时间花费是46。

在这里插入图片描述

程序截图

在这里插入图片描述
用python运行main.py后即可得到甘特图和结果图:

在这里插入图片描述

问询、帮助

https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1628087.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

构建NodeJS库--前端项目的打包发布

1. 前言 学习如何打包发布前端项目&#xff0c;需要学习以下相关知识&#xff1a; package.json 如何初始化配置&#xff0c;以及学习npm配置项&#xff1b; 模块类型type配置&#xff0c; 这是nodejs的package.json的配置main 入口文件的配置 webpack 是一个用于现代 JavaSc…

golang反射

go反射 反射基本介绍应用场景基本使用结构体注意练习最佳实践遍历结构体的方法&#xff0c;调用接头体的方法&#xff0c;获取结构体的标签 反射 基本介绍 反射可以在运行时动态获取变量的各种信息&#xff0c;比如变量的类型(type)、类别(kind)如果是结构体变量&#xff0c;…

Java应用开发必备:使用 easy-captcha 组件生成验证码的详细介绍

一、前言 最近系统开发在优化验证码的相关功能&#xff0c;第一反应就是有没有开源的第三方组件可以使用呢。 在一番寻觅以后&#xff0c;还真发现一个好用的第三方验证码组件Easy-captcha。Easy-captcha是一个开源的Java库&#xff0c;用于生成和验证验证码&#xff0c;它的…

RGB灯珠的控制-单片机通用模板

RGB灯珠的控制-单片机通用模板 一、RGB控制的原理二、RGB.c的实现三、RGB.h的实现四、color色彩空间变换以及控制渐变一、RGB控制的原理 ①通过IO发送脉冲识别0/1编码,组合24Bit的RGB数据,从而控制RGB;②每个RGB灯珠通过DIN、DOU进行级联起来;③通过HSV色彩转换成RGB从而控…

Tomcat架构设计精髓分析-Connector高内聚低耦合设计

优秀的模块化设计通常都会采用高内聚、低耦合 高内聚是指相关度比较高的功能要尽可能集中&#xff0c;不要分散。低耦合是指两个相关的模块要尽可能减少依赖的部分和降低依赖的程序&#xff0c;不要让两个模块产中强依赖。 Tomca连接器需要实现的功能: 监听网络端口 接受网络…

手撕netty源码(一)- NioEventLoopGroup

文章目录 前言一、NIO 与 netty二、NioEventLoopGroup 对象的创建过程2.1 创建流程图2.2 EventExecutorChooser 的创建 前言 processOn文档跳转 本文是手撕netty源码系列的开篇文章&#xff0c;会先介绍一下netty对NIO关键代码的封装位置&#xff0c;主要介绍 NioEventLoopGro…

使用PyCharm开发工具创建工程

一. 简介 前面文章实现了开发 python程序使用的 开发工具PyCharm&#xff0c;本文来学习使用 PyCharm开发工具创建一个 python工程。 二. 使用PyCharm开发工具创建工程 1. 首先&#xff0c;打开 PyCharm开发工具&#xff0c;打开 "New project" 选项&#xff1a; …

hive启动beeline报错

问题一在zpark启动集群报错 出现上面的问题执行以下代码 chmod 777 /opt/apps/hadoop-3.2.1/logs 问题二启动beeline报错 执行 cd /opt/apps/hadoop-3.2.1 bin/hadoop dfsadmin -safemode leave 问题三执行查询语句报错 执行 set hive.exec.mode.local.autotrue;

java接口加密解密

这里写目录标题 controller加解密工具类加密&#xff08;本质是对ResponseBody加密&#xff09;解密&#xff08;本质是对RequestBody传参解密&#xff09;注解 controller Controller public class PathVariableController {GetMapping(value "/test")ResponseBod…

Redis缓存问题:穿透,击穿,雪崩等

Redis缓存问题:穿透,击穿,雪崩等 在高并发场景下,数据库往往是最薄弱的环节,我们通常选择使用redis来进行缓存,以起到缓冲作用,来降低数据库的压力,但是一旦缓存出现问题,也会导致数据库瞬间压力过大甚至崩溃,从而导致整个系统崩溃.今天就聊聊常见的redis缓存问题. 缓存击穿 …

相关分析方法

目录 1.什么是相关分析方法 2.相关系数 3.常见的相关分析方法 3.1.皮尔逊相关系数 3.2.斯皮尔曼等级相关 ​​​​​​​3.3.肯德尔等级相关 ​​​​​​​3.4.其它 4.应用 5.注意事项 6.结语 1.什么是相关分析方法 相关分析是数据分析中的一种统计方法&#xff0c…

[C++基础学习]----02-C++运算符详解

前言 C中的运算符用于执行各种数学或逻辑运算。下面是一些常见的C运算符及其详细说明&#xff1a;下面详细解释一些常见的C运算符类型&#xff0c;包括其原理和使用方法。 正文 01-运算符简介 算术运算符&#xff1a; a、加法运算符&#xff08;&#xff09;&#xff1a;对两个…

RabbitMQ(高级)笔记

一、生产者可靠性 &#xff08;1&#xff09;生产者重连&#xff08;不建议使用&#xff09; logging:pattern:dateformat: MM-dd HH:mm:ss:SSSspring:rabbitmq:virtual-host: /hamllport: 5672host: 192.168.92.136username: hmallpassword: 123listener:simple:prefetch: 1c…

AWTK 开源串口屏开发(17) - 通过 MODBUS 访问数组数据

在 AWTK 串口屏中&#xff0c;内置了 MODBUS Client Channel 的模型&#xff0c;不用编写代码即可实现在 ListView 中显示数组数据。 MODBUS 协议一次只能读取 125 个 WORD&#xff0c;AWTK-MODBUS Client Channel 支持长数据&#xff0c;自动分成多个请求访问。 1. 功能 不用…

浏览器的同源策略与解决跨域

同源策略&#xff08;协议、域名、端口&#xff09; 同源策略&#xff08;Same-Origin Policy&#xff09;是一个在浏览器安全模型中被实施的重要安全机制。它是基于域名、协议和端口号的限制&#xff0c;用于防止不同源的网页间的恶意行为和信息泄露。 根据同源策略&#xf…

【Diffusion实战】训练一个diffusion模型生成蝴蝶图像(Pytorch代码详解)

上一篇Diffusion实战是确确实实一步一步走的公式&#xff0c;这回采用一个更方便的库&#xff1a;diffusers&#xff0c;来实现Diffusion模型训练。 Diffusion实战篇&#xff1a;   【Diffusion实战】训练一个diffusion模型生成S曲线&#xff08;Pytorch代码详解&#xff09;…

【Linux学习】​​学习Linux的准备工作和Linux的基本指令

˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好&#xff0c;我是xiaoxie.希望你看完之后,有不足之处请多多谅解&#xff0c;让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如…

并并并并·病查坤

P1、什么是并查集 引用自百度百科&#xff1a; 并查集&#xff0c;在一些有N个元素的集合应用问题中&#xff0c;我们通常是在开始时让每个元素构成一个单元素的集合&#xff0c;然后按一定顺序将属于同一组的元素所在的集合合并&#xff0c;其间要反复查找一个元素在哪个集合…

【数据标注】使用LabelImg标注YOLO格式的数据(案例演示)

文章目录 LabelImg介绍LabelImg安装LabelImg界面标注常用的快捷键标注前的一些设置案例演示检查YOLO标签中的标注信息是否正确参考文章 LabelImg介绍 LabelImg是目标检测数据标注工具&#xff0c;可以标注两种格式&#xff1a; VOC标签格式&#xff0c;标注的标签存储在xml文…