【C++】类和对象⑤(static成员 | 友元 | 内部类 | 匿名对象)

news2024/12/23 3:37:08

🔥个人主页:Forcible Bug Maker

🔥专栏:C++

目录

前言

static静态成员

友元

友元函数

友元类

内部类

匿名对象

结语


前言

本篇主要内容:类和对象的一些知识点补充,包括static静态成员,友元,内部类等。

本篇基本上就是类和对象主要内容的收尾环节了,在前几篇中,已经将六大默认成员函数逐一做了介绍。接下来的内容就是补充一些语法和细节。那么开始我们今天的内容。

static静态成员

声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之为静态成员变量;用static修饰的成员函数,称之为静态成员函数静态成员变量一定要在类外进行初始化

在C++中,static成员是类的成员,但它与类的任何特定对象实例都不关联。也就是说,不管创建了多少个类的对象,static成员都只有一个副本

static成员可以是成员变量成员函数。以下是关于static成员的一些关键点:

  1. 静态数据成员:静态数据成员在类的所有对象之间共享。这意味着无论创建了多少个对象,都只有一个静态数据成员的副本,且此副本存放在静态区。静态数据成员必须类定义外部进行初始化,且定义时不添加static关键字类中只是声明。如:

    class MyClass {  
    public:  
        static int count;  // 声明静态数据成员  
    };  
      
    int MyClass::count = 0;  // 在类定义外部初始化静态数据成员
  2. 静态成员函数:静态成员函数是类的一个成员函数,它可以在没有类的实例的情况下调用静态成员函数只能访问静态成员(包括静态成员变量和其他静态成员函数)。它们不能访问类的非静态成员,因为非静态成员需要类的实例才能存在,本质上说,静态成员函数没有隐藏的this指针,本身就是无法访问任何非静态成员的。如:

    class MyClass {  
    public:  
        static int count;  
        static void GetCount() {  
            count++;  // 可以访问静态数据成员  
        }  
        void doSomething() {  
            // 这里不能访问静态成员count,除非使用 MyClass::count  
        }  
    };
  3. 访问静态成员:你可以使用类名和作用域解析运算符( :: )来访问静态成员,无论是否创建了类的实例。例如,MyClass::count 和 MyClass::GetCount()

  4. 用途:静态成员常用于实现计数器(如上述示例中的count),或者当你想在类的所有实例之间共享某些数据时。静态成员函数通常用于执行与类本身相关但不依赖于任何特定对象实例的操作。

注:虽然静态成员与类的实例不关联,但它们仍然属于类的一部分,并类的访问访问限定符(如publicprotectedprivate)的影响

这里用一个面试题,引入关于静态成员变量的使用:实现一个类,计算程序中创建出了多少个对象:

class A
{
public:
	A() { ++_scount; }
	A(const A& t) { ++_scount; }
	~A() { --_scount; }
	static int GetACount() { return _scount; }
private:
	static int _scount;
};
int A::_scount = 0;
void TestA()
{
	cout << A::GetACount() << endl;
	A a1, a2;
	A a3(a1);
	cout << A::GetACount() << endl;
}

此份代码中,声明定义了静态成员变量_scount,当调用类的构造函数或拷贝构造时,静态成员变量_scount就会++计数,当调用析构函数时,就会对其逐一--,我们可以调用TestA()函数,来观察在这个过程中累计创建了多少对象。

注:静态成员函数不可以直接调用非静态成员变量,因为其没有this指针及现成的实例化对象;非静态成员函数可以直接调用类的静态成员变量,非静态成员函数本身并不依赖于特定的对象状态,它可以通过类的作用域直接访问静态成员变量

友元

友元提供了一种突破封装的方式,有时提供了便利。但是友元会增加耦合度,破坏了封装,所以友元不宜多用
友元分为:友元函数友元类

友元函数

在前面Date类的博客中,曾提到过全局变量重载流插入(cout)和流提取(cin)操作符,由于插入和提取需要访问私有的成员变量,所以我们将这两个个全局函数设置为Date类的友元,如果感兴趣可以看看那篇博客关于友元的内容,这里就不赘述了。

地址放在这:【C++】日期类Date(详解)

说明:

  • 友元函数可访问类的私有和保护成员,但不是类的成员函数
  • 友元函数不能用const修饰
  • 友元函数可以在类定义的任何地方声明,不受类访问限定符限制
  • 一个函数可以是多个类的友元函数
  • 友元函数的调用与普通函数的调用原理相同

友元类

友元类的所有成员函数都可以是另一个类的友元函数都可以访问另一个类中的非公有成员

友元类的一些特性:

  • 友元关系是单向的,不具有交换性。比如上述Time类和Date类,在Time类中声明Date类为其友元类,那么可以在Date类中直接访问Time类的私有成员变量,但想在Time类中访问Date类中私有的成员变量则不行。
  • 友元关系不能传递。如果C是B的友元, B是A的友元,则不能说明C时A的友元。
  • 友元关系不能继承。在继承位置再给大家详细介绍。

概念浅显易懂,用起来也不麻烦。

class Time
{
	// 声明日期类为时间类的友元类,则在日期类中就直接访问Time类中的私有成员变量
	friend class Date; 
public:
	Time(int hour = 0, int minute = 0, int second = 0)
		: _hour(hour)
		, _minute(minute)
		, _second(second)
	{}
private:
	int _hour;
	int _minute;
	int _second;
};
class Date
{
public:
	Date(int year = 1900, int month = 1, int day = 1)
		: _year(year)
		, _month(month)
		, _day(day)
	{}
	void SetTimeOfDate(int hour, int minute, int second)
	{
		// 直接访问时间类私有的成员变量
		_t._hour = hour;
		_t._minute = minute;
		_t._second = second;
	}
private:
	int _year;
	int _month;
	int _day;
	Time _t;
};

在上述代码中,Date类被设置成了Time类的友元,所以在Date类的中成员函数中,可以直接使用Time类型的对象。

内部类

概念:如果一个类定义在另一个类的内部,这个内部类就叫做内部类。内部类是一个独立的类,它不属于外部类,更不能通过外部类的对象去访问内部类的非共有成员外部类对内部类没有任何优越的访问权限

注:内部类就是外部类的友元类,参见友元类的定义,内部类可以通过外部类的对象参数来访问外部类中的所有成员但是外部类不是内部类的友元

特性

  1. 内部类定义在外部类的public、protected、private都是可以的。
  2. 注意内部类可以直接访问外部类中的static成员,不需要外部类的对象 / 类名。
  3. sizeof(外部类) = 外部类成员所占内存合计,和内部类没有任何关系。
class A
{
private:
	static int k;
	int h;
public:
	class B // B天生就是A的友元
	{
	public:
		void foo(const A& a)
		{
			cout << k << endl;//OK
			cout << a.h << endl;//OK
		}
	};
};
int A::k = 1;
int main()
{
	A::B b;
	b.foo(A());
	return 0;
}

上述代码中,演示了这一系列特性,总的来说,B定义在A里面只是受A的类域限制,其他除了访问限定符影响类成员的访问之外,就和两个独立定义的类没什么区别了。当class B定义在private里时,就无法通过A::B bb;创建B类型的对象。

匿名对象

C++的匿名对象(也称为临时对象)是在代码中没有显式命名的对象。这种对象通常在创建后立即使用,并且在表达式结束时自动销毁(生命周期只存在于当前这一行)。匿名对象通常用于简化代码和提高可读性

class A
{
public:
	A(int a = 0)
		:_a(a)
	{
		cout << "A(int a)" << endl;
	}
	~A()
	{
		cout << "~A()" << endl;
	}
private:
	int _a;
};
class Solution {
public:
	int Sum_Solution(int n) {
		//...
		return n;
	}
};
int main()
{
	A aa1;
	// A aa1(); 不能这么定义对象,因为编译器无法识别下面是一个函数声明,还是对象定义
	
	// 我们可以这么定义匿名对象,匿名对象的特点是不用取名字,
	// 但是他的生命周期只有这一行,我们可以看到下一行他就会自动调用析构函数
	A();
	cout << endl;
	A aa2(2);
	// 匿名对象在这样场景下就很好用,当然还有一些其他使用场景,这个我们以后遇到了再说
	Solution().Sum_Solution(10);
	return 0;
}

以上代码中,给出了匿名对象的样例使用,作为匿名对象,其生命周期只存在于当前这一行当到下一行时就会被销毁,编译器自动调用其析构函数。虽然只有一行的生命周期,其还是有用武之地的。比如说像上面那样通过匿名对象直接调用类的成员函数,不需要我们单独再创建一个对象。

关于匿名对象的使用可以做一个总结:

1. 函数返回值:当函数返回一个对象时,如果该对象没有被赋值给任何变量,那么它就是一个匿名对象。

struct Foo {  
    Foo() { /* ... */ }  
    ~Foo() { /* ... */ }  
};  
  
Foo createFoo() {  
    return Foo(); // 返回一个匿名对象  
}

2. 局部变量:在某些情况下,你可能希望创建一个局部变量但不为其命名。这通常发生在对象的生命周期非常短暂,且仅用于单个表达式时。

void doSomething() {  
    std::string("Hello, World!").size(); // 创建一个匿名std::string对象并获取其大小  
}

3. 直接初始化:在直接初始化中,你可以使用匿名对象来初始化另一个对象。

std::string str = std::string("Hello, World!"); // 使用匿名对象初始化str

注:由于匿名对象的生命周期很短,如果你在它们的生命周期之外访问它们,或者依赖于它们的特定销毁行为(例如,释放资源),那么可能会出现问题。因此,在使用匿名对象时,务必确保你了解其生命周期和销毁行为

结语

到这里本篇博客的内容基本上就结束了,类和对象到这里基本上算是基本掌握,算是迈过了C++的第一道坎。我们今天补充了类和对象的一些语法细节,包括static静态成员:没有this指针,所有对象共用;友元:包括友元函数和友元类;还提到了内部类:内部类天生是外部类的友元,但是外部类却不是内部类的友元;最后说到了匿名对象:声明周期只存在于当前一行。在下篇博客中,我们会提及C++内存管理相关的内容,敬请期待!

博主后续还会产出更多有意思的内容,感谢大家的支持!♥

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1627954.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

绘唐3AIGCMJ提示词推导指令

绘唐3AIGCMJ提示词推导指令Docshttps://qvfbz6lhqnd.feishu.cn/wiki/D3YLwmIzmivZ7BkDij6coVcbn7W # Role: 小说导演 ## Profile *Author*: X *Version*: 1.0 *Language*: 中文 *Description*: 这个角色会对用户输入的小说文本内容进行分析,然后用适用于midjourney的niji机器…

时间序列预测:基于PyTorch框架的循环神经网络(RNN)实现销量预测

之前随手一写&#xff0c;没想到做预测的同学还挺多&#xff0c;但是之前那个效果并不好&#xff0c;于是在之前的基础上重新修改完善&#xff0c;到了现在这一步才感觉预测算是初步能应用。 上文地址&#xff1a;LSTM模型预测时间序列&#xff1a;根据历史销量数据预测商品未…

深入OceanBase内部机制:分区机制构建高可用、高性能的分布式数据库基石

码到三十五 &#xff1a; 个人主页 在数据库技术的发展历程中&#xff0c;随着数据量的不断增长和业务需求的日益复杂&#xff0c;如何高效地存储、查询和处理数据成为了关键挑战。OceanBase作为一款高性能、高可用的分布式关系数据库&#xff0c;通过其独特的分区机制&#xf…

小清新DP题(多做多想)

牛客小白月赛90 F problem solution R(n), R(m); int L 0;F(i, 1, m) R(d[i].st), R(d[i].en), c[ L] d[i].st, c[ L] d[i].en;c[ L] n;sort(c 1, c L 1); int cnt 0;F(i, 1, L) if (c[i] ! c[i - 1]) {g[c[i]] cnt;D[cnt] c[i];}sort(d 1, d m 1);f[0][0][0] …

VirtualBox7.0.16的蓝屏大坑与ssh登陆ubuntu虚拟机的办法

背景&#xff1a; 安装了最新版的VirtualBox&#xff0c;装了ubuntu系统&#xff0c;在win10下通过ssh死活无法与ubuntu进行正常登陆控制。 然后开始了踩坑。 问题1&#xff1a;ssh登陆失败&#xff0c;但是主机能ping通ubuntu&#xff0c;反过来也能ping通&#xff0c;网络…

Python常用包介绍

数据处理 1.numpy&#xff08;数据处理和科学计算&#xff09; import numpy as np np.set_printoptions(precision2, suppressTrue) # 设置打印选项&#xff0c;保留两位小数&#xff0c;禁止科学计数法arr np.arange(1, 6) # 使用arange函数创建数组 print(arr)# 输出&…

HarmonyOS 实战开发-MindSpore Lite引擎进行模型推理

场景介绍 MindSpore Lite 是一款 AI 引擎&#xff0c;它提供了面向不同硬件设备 AI 模型推理的功能&#xff0c;目前已经在图像分类、目标识别、人脸识别、文字识别等应用中广泛使用。 本文介绍使用 MindSpore Lite 推理引擎进行模型推理的通用开发流程。 基本概念 在进行开…

MyBatis入门学习三(缓存、高级查询、分页 插件)

目录 1、MyBatis缓存 1.1 一级缓存 1.2 二级缓存 1.2.1 MyBatis实现 1.2.2 第三方实现 2、高级查询 2.1 数据模型 2.2 创建数据库表 2.3 一对一查询 2.3.1 第一种方式 2.3.2 第二种方式 2.4 一对多查询 2.5 多对多查询 2.6 延迟加载 3、分页插件 1、MyBatis缓存 …

mac上安装Tomcat

1. 简介 Tomcat 是一个开源的 Java 服务器&#xff0c;它实现了 Java Servlet、JavaServer Pages&#xff08;JSP&#xff09;和Java WebSocket 技术。Tomcat 是 Apache 软件基金会的一个项目&#xff0c;是一个轻量级、高性能的 Web 容器。作为一个 Web 服务器&#xff0c;To…

PostgreSQL的扩展(extensions)-常用的扩展之pg_repack

PostgreSQL的扩展&#xff08;extensions&#xff09;-常用的扩展之pg_repack pg_repack 是一款非常有用的 PostgreSQL 扩展工具&#xff0c;它能够重新打包&#xff08;repack&#xff09;表和索引以回收空间并减少碎片&#xff0c;而且在这个过程中不会锁定表&#xff0c;允…

2024年深圳杯东三省数学建模联赛A题论文首发+问题一代码分享

深圳杯A题论文代码分享资料链接&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1L2NVgoefSW-yuqZjEB3wcw 提取码&#xff1a;sxjm 基于优化模型的多个火箭残骸的准确定位 摘要 在现代航天技术中&#xff0c;火箭是实现空间探索的关键工具。由于火箭发射过程中的高成…

【论文笔记 | 异步联邦】PORT:How Asynchronous can Federated Learning Be?

1. 论文信息 How Asynchronous can Federated Learning Be?2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS). IEEE, 2022&#xff0c;不属于ccf认定 2. introduction 2.1. 背景&#xff1a; 现有的异步FL文献中设计的启发式方法都只反映设计空…

vue echarts 饼图(环形图)

vue echarts 饼图(环形图) &#xff0c;echarts版本为5.3.3 可以自定义颜色 <template><div><div id"pieChart1" ref"pieChartRef1" style"width: 100%; height: 250px"></div></div></template><scri…

备考2024年小学生古诗文大会:做做10道历年真题和知识点(持续)

根据往年的安排&#xff0c;2024年上海市小学生古诗文大会预计还有一个月就将启动。我们继续来随机看10道往年的上海小学生古诗文大会真题&#xff0c;这些题目来自我去重、合并后的1700在线题库&#xff0c;每道题我都提供了参考答案和独家解析。 根据往期的经验&#xff0c;只…

《ESP8266通信指南》7-Arduino 开发8266的环境配置与示例代码烧录

往期 《ESP8266通信指南》6-创建TCP服务器&#xff08;AT指令&#xff09;-CSDN博客 《ESP8266通信指南》5-TCP通信透传模式(AT指令)-CSDN博客 《ESP8266通信指南》4-以Client进行TCP通信&#xff08;AT指令&#xff09;-CSDN博客 《ESP8266通信指南》3-常用AT指令详解-826…

又重新搭了个个人博客

哈喽大家好&#xff0c;我是咸鱼。 前段时间看到一个学弟写了篇用 Hexo 搭建博客的教程&#xff0c;心中沉寂已久的激情重新被点燃起来。&#xff08;以前搞过一个个人网站&#xff0c;但是因为种种原因最后不了了之&#xff09; 于是花了一天时间参考教程搭了个博客网站&…

LM2576D2TR4-5G 3.0安15伏降压开关稳压器 PDF中文资料_参数_引脚图

LM2576D2TR4-5G 规格信息&#xff1a; 制造商:ON Semiconductor 产品种类:开关稳压器 RoHS:是 装置风格:SMD/SMT 封装 / 箱体:TO-263-5 输出电压:5 V 输出电流:3 A 输出端数量:1 Output 最大输入电压:45 V 拓扑结构:Buck 最小输入电压:7 V 开关频率:52 kHz 最小工作…

设计模式——终止模式之两阶段终止模式

文章目录 1. 错误思路2. 两阶段终止模式2.1 利用 isInterrupted2.2 利用停止标记interrupt-打断park Two Phase Termination 在一个线程 T1 中如何“优雅”终止线程 T2&#xff1f;这里的【优雅】指的是给 T2 一个料理后事的机会。 1. 错误思路 使用线程对象的 stop() 方法停…

在Elasticsearch 7.9.2中安装IK分词器并进行自定义词典配置

Elasticsearch是一个强大的开源搜索引擎&#xff0c;而IK分词器是针对中文文本分析的重要插件。本文将引导您完成在Elasticsearch 7.9.2版本中安装IK分词器、配置自定义词典以及验证分词效果的全过程。 步骤一&#xff1a;下载IK分词器 访问IK分词器的GitHub发布页面&#xf…

Unity打开Android文件管理器并加载文件

1、在AssetStore商店中加入免费插件 2、调用代码 3、使用UnityWebRequest加载路径数据