HarmonyOS 实战开发-MindSpore Lite引擎进行模型推理

news2024/12/23 3:55:04

场景介绍

MindSpore Lite 是一款 AI 引擎,它提供了面向不同硬件设备 AI 模型推理的功能,目前已经在图像分类、目标识别、人脸识别、文字识别等应用中广泛使用。

本文介绍使用 MindSpore Lite 推理引擎进行模型推理的通用开发流程。

基本概念

在进行开发前,请先了解以下概念。

张量 :它与数组和矩阵非常相似,是 MindSpore Lite 网络运算中的基本数据结构。

Float16 推理模式 : Float16 又称半精度,它使用 16 比特表示一个数。Float16 推理模式表示推理的时候用半精度进行推理。

接口说明

这里给出 MindSpore Lite 推理的通用开发流程中涉及的一些接口,具体请见下列表格。

Context 相关接口

Model 相关接口

Tensor 相关接口

开发步骤

使用 MindSpore Lite 进行模型推理的开发流程如下图所示。**图 1 **使用 MindSpore Lite 进行模型推理的开发流程

进入主要流程之前需要先引用相关的头文件,并编写函数生成随机的输入,具体如下:

#include <stdlib.h>
#include <stdio.h>
#include "mindspore/model.h"

//生成随机的输入
int GenerateInputDataWithRandom(OH_AI_TensorHandleArray inputs) {
  for (size_t i = 0; i < inputs.handle_num; ++i) {
    float *input_data = (float *)OH_AI_TensorGetMutableData(inputs.handle_list[i]);
    if (input_data == NULL) {
      printf("MSTensorGetMutableData failed.\n");
      return OH_AI_STATUS_LITE_ERROR;
    }
    int64_t num = OH_AI_TensorGetElementNum(inputs.handle_list[i]);
    const int divisor = 10;
    for (size_t j = 0; j < num; j++) {
      input_data[j] = (float)(rand() % divisor) / divisor;  // 0--0.9f
    }
  }
  return OH_AI_STATUS_SUCCESS;
}

然后进入主要的开发步骤,具括包括模型的准备、读取、编译、推理和释放,具体开发过程及细节请见下文的开发步骤及示例。

  1. 模型准备。

需要的模型可以直接下载,也可以通过模型转换工具获得。

a. 下载模型的格式若为.ms,则可以直接使用。本文以 mobilenetv2.ms 为例。

b. 如果是第三方框架的模型,比如 TensorFlow、TensorFlow Lite、Caffe、ONNX 等,可以使用 模型转换工具转换为.ms 格式的模型文件。

  1. 创建上下文,设置线程数、设备类型等参数。
// 创建并配置上下文,设置运行时的线程数量为2,绑核策略为大核优先
OH_AI_ContextHandle context = OH_AI_ContextCreate();
if (context == NULL) {
  printf("OH_AI_ContextCreate failed.\n");
  return OH_AI_STATUS_LITE_ERROR;
}
const int thread_num = 2;
OH_AI_ContextSetThreadNum(context, thread_num);
OH_AI_ContextSetThreadAffinityMode(context, 1);
//设置运行设备为CPU,不使用Float16推理
OH_AI_DeviceInfoHandle cpu_device_info = OH_AI_DeviceInfoCreate(OH_AI_DEVICETYPE_CPU);
if (cpu_device_info == NULL) {
  printf("OH_AI_DeviceInfoCreate failed.\n");
  OH_AI_ContextDestroy(&context);
  return OH_AI_STATUS_LITE_ERROR;
}
OH_AI_DeviceInfoSetEnableFP16(cpu_device_info, false);
OH_AI_ContextAddDeviceInfo(context, cpu_device_info);
  1. 创建、加载与编译模型。

调用 OH_AI_ModelBuildFromFile 加载并编译模型。

本例中传入 OH_AI_ModelBuildFromFile 的 argv[1]参数是从控制台中输入的模型文件路径。

// 创建模型
OH_AI_ModelHandle model = OH_AI_ModelCreate();
if (model == NULL) {
  printf("OH_AI_ModelCreate failed.\n");
  OH_AI_ContextDestroy(&context);
  return OH_AI_STATUS_LITE_ERROR;
}

// 加载与编译模型,模型的类型为OH_AI_MODELTYPE_MINDIR
int ret = OH_AI_ModelBuildFromFile(model, argv[1], OH_AI_MODELTYPE_MINDIR, context);
if (ret != OH_AI_STATUS_SUCCESS) {
  printf("OH_AI_ModelBuildFromFile failed, ret: %d.\n", ret);
  OH_AI_ModelDestroy(&model);
  return ret;
}
  1. 输入数据。

模型执行之前需要向输入的张量中填充数据。本例使用随机的数据对模型进行填充。

// 获得输入张量
OH_AI_TensorHandleArray inputs = OH_AI_ModelGetInputs(model);
if (inputs.handle_list == NULL) {
  printf("OH_AI_ModelGetInputs failed, ret: %d.\n", ret);
  OH_AI_ModelDestroy(&model);
  return ret;
}
// 使用随机数据填充张量
ret = GenerateInputDataWithRandom(inputs);
if (ret != OH_AI_STATUS_SUCCESS) {
  printf("GenerateInputDataWithRandom failed, ret: %d.\n", ret);
  OH_AI_ModelDestroy(&model);
  return ret;
}
  1. 执行推理。

使用 OH_AI_ModelPredict 接口进行模型推理。

// 执行模型推理
OH_AI_TensorHandleArray outputs;
ret = OH_AI_ModelPredict(model, inputs, &outputs, NULL, NULL);
if (ret != OH_AI_STATUS_SUCCESS) {
  printf("OH_AI_ModelPredict failed, ret: %d.\n", ret);
  OH_AI_ModelDestroy(&model);
  return ret;
}
  1. 获取输出。

模型推理结束之后,可以通过输出张量得到推理结果。

// 获取模型的输出张量,并打印
for (size_t i = 0; i < outputs.handle_num; ++i) {
  OH_AI_TensorHandle tensor = outputs.handle_list[i];
  int64_t element_num = OH_AI_TensorGetElementNum(tensor);
  printf("Tensor name: %s, tensor size is %zu ,elements num: %lld.\n", OH_AI_TensorGetName(tensor),
        OH_AI_TensorGetDataSize(tensor), element_num);
  const float *data = (const float *)OH_AI_TensorGetData(tensor);
  printf("output data is:\n");
  const int max_print_num = 50;
  for (int j = 0; j < element_num && j <= max_print_num; ++j) {
    printf("%f ", data[j]);
  }
  printf("\n");
}
  1. 释放模型。

不再使用 MindSpore Lite 推理框架时,需要释放已经创建的模型。

// 释放模型
OH_AI_ModelDestroy(&model);

调测验证

  1. 编写 CMakeLists.txt。
cmake_minimum_required(VERSION 3.14)
project(Demo)

add_executable(demo main.c)

target_link_libraries(
        demo
        mindspore-lite.huawei
        pthread
        dl
)

● 使用 ohos-sdk 交叉编译,需要对 CMake 设置 native 工具链路径,即:-DCMAKE_TOOLCHAIN_FILE=“/xxx/native/build/cmake/ohos.toolchain.camke”。

● 工具链默认编译 64 位的程序,如果要编译 32 位,需要添加:-DOHOS_ARCH=“armeabi-v7a”。

  1. 运行。

● 使用 hdc_std 连接设备,并将 demo 和 mobilenetv2.ms 推送到设备中的相同目录。

● 使用 hdc_std shell 进入设备,并进入 demo 所在的目录执行如下命令,即可得到结果。

./demo mobilenetv2.ms

得到如下输出:

# ./QuickStart ./mobilenetv2.ms                                            
Tensor name: Softmax-65, tensor size is 4004 ,elements num: 1001.
output data is:
0.000018 0.000012 0.000026 0.000194 0.000156 0.001501 0.000240 0.000825 0.000016 0.000006 0.000007 0.000004 0.000004 0.000004 0.000015 0.000099 0.000011 0.000013 0.000005 0.000023 0.000004 0.000008 0.000003 0.000003 0.000008 0.000014 0.000012 0.000006 0.000019 0.000006 0.000018 0.000024 0.000010 0.000002 0.000028 0.000372 0.000010 0.000017 0.000008 0.000004 0.000007 0.000010 0.000007 0.000012 0.000005 0.000015 0.000007 0.000040 0.000004 0.000085 0.000023 

鸿蒙全栈开发全新学习指南

也为了积极培养鸿蒙生态人才,让大家都能学习到鸿蒙开发最新的技术,针对一些在职人员、0基础小白、应届生/计算机专业、鸿蒙爱好者等人群,整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线[包含了大APP实战项目开发]。

本路线共分为四个阶段:

第一阶段:鸿蒙初中级开发必备技能

第二阶段:鸿蒙南北双向高工技能基础:https://qr21.cn/Bm8gyp

第三阶段:应用开发中高级就业技术

第四阶段:全网首发-工业级南向设备开发就业技术:https://qr21.cn/Bm8gyp

《鸿蒙 (Harmony OS)开发学习手册》(共计892页)

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

开发基础知识:https://qr21.cn/Bm8gyp

1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……

基于ArkTS 开发

1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……

鸿蒙开发面试真题(含参考答案):https://qr21.cn/Bm8gyp

鸿蒙入门教学视频:

美团APP实战开发教学:https://qr21.cn/Bm8gyp

写在最后

  • 如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙:
  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
  • 想要获取更多完整鸿蒙最新学习资源,请移步前往小编:https://qr21.cn/FV7h05

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1627945.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MyBatis入门学习三(缓存、高级查询、分页 插件)

目录 1、MyBatis缓存 1.1 一级缓存 1.2 二级缓存 1.2.1 MyBatis实现 1.2.2 第三方实现 2、高级查询 2.1 数据模型 2.2 创建数据库表 2.3 一对一查询 2.3.1 第一种方式 2.3.2 第二种方式 2.4 一对多查询 2.5 多对多查询 2.6 延迟加载 3、分页插件 1、MyBatis缓存 …

mac上安装Tomcat

1. 简介 Tomcat 是一个开源的 Java 服务器&#xff0c;它实现了 Java Servlet、JavaServer Pages&#xff08;JSP&#xff09;和Java WebSocket 技术。Tomcat 是 Apache 软件基金会的一个项目&#xff0c;是一个轻量级、高性能的 Web 容器。作为一个 Web 服务器&#xff0c;To…

PostgreSQL的扩展(extensions)-常用的扩展之pg_repack

PostgreSQL的扩展&#xff08;extensions&#xff09;-常用的扩展之pg_repack pg_repack 是一款非常有用的 PostgreSQL 扩展工具&#xff0c;它能够重新打包&#xff08;repack&#xff09;表和索引以回收空间并减少碎片&#xff0c;而且在这个过程中不会锁定表&#xff0c;允…

2024年深圳杯东三省数学建模联赛A题论文首发+问题一代码分享

深圳杯A题论文代码分享资料链接&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1L2NVgoefSW-yuqZjEB3wcw 提取码&#xff1a;sxjm 基于优化模型的多个火箭残骸的准确定位 摘要 在现代航天技术中&#xff0c;火箭是实现空间探索的关键工具。由于火箭发射过程中的高成…

【论文笔记 | 异步联邦】PORT:How Asynchronous can Federated Learning Be?

1. 论文信息 How Asynchronous can Federated Learning Be?2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS). IEEE, 2022&#xff0c;不属于ccf认定 2. introduction 2.1. 背景&#xff1a; 现有的异步FL文献中设计的启发式方法都只反映设计空…

vue echarts 饼图(环形图)

vue echarts 饼图(环形图) &#xff0c;echarts版本为5.3.3 可以自定义颜色 <template><div><div id"pieChart1" ref"pieChartRef1" style"width: 100%; height: 250px"></div></div></template><scri…

备考2024年小学生古诗文大会:做做10道历年真题和知识点(持续)

根据往年的安排&#xff0c;2024年上海市小学生古诗文大会预计还有一个月就将启动。我们继续来随机看10道往年的上海小学生古诗文大会真题&#xff0c;这些题目来自我去重、合并后的1700在线题库&#xff0c;每道题我都提供了参考答案和独家解析。 根据往期的经验&#xff0c;只…

《ESP8266通信指南》7-Arduino 开发8266的环境配置与示例代码烧录

往期 《ESP8266通信指南》6-创建TCP服务器&#xff08;AT指令&#xff09;-CSDN博客 《ESP8266通信指南》5-TCP通信透传模式(AT指令)-CSDN博客 《ESP8266通信指南》4-以Client进行TCP通信&#xff08;AT指令&#xff09;-CSDN博客 《ESP8266通信指南》3-常用AT指令详解-826…

又重新搭了个个人博客

哈喽大家好&#xff0c;我是咸鱼。 前段时间看到一个学弟写了篇用 Hexo 搭建博客的教程&#xff0c;心中沉寂已久的激情重新被点燃起来。&#xff08;以前搞过一个个人网站&#xff0c;但是因为种种原因最后不了了之&#xff09; 于是花了一天时间参考教程搭了个博客网站&…

LM2576D2TR4-5G 3.0安15伏降压开关稳压器 PDF中文资料_参数_引脚图

LM2576D2TR4-5G 规格信息&#xff1a; 制造商:ON Semiconductor 产品种类:开关稳压器 RoHS:是 装置风格:SMD/SMT 封装 / 箱体:TO-263-5 输出电压:5 V 输出电流:3 A 输出端数量:1 Output 最大输入电压:45 V 拓扑结构:Buck 最小输入电压:7 V 开关频率:52 kHz 最小工作…

设计模式——终止模式之两阶段终止模式

文章目录 1. 错误思路2. 两阶段终止模式2.1 利用 isInterrupted2.2 利用停止标记interrupt-打断park Two Phase Termination 在一个线程 T1 中如何“优雅”终止线程 T2&#xff1f;这里的【优雅】指的是给 T2 一个料理后事的机会。 1. 错误思路 使用线程对象的 stop() 方法停…

在Elasticsearch 7.9.2中安装IK分词器并进行自定义词典配置

Elasticsearch是一个强大的开源搜索引擎&#xff0c;而IK分词器是针对中文文本分析的重要插件。本文将引导您完成在Elasticsearch 7.9.2版本中安装IK分词器、配置自定义词典以及验证分词效果的全过程。 步骤一&#xff1a;下载IK分词器 访问IK分词器的GitHub发布页面&#xf…

Unity打开Android文件管理器并加载文件

1、在AssetStore商店中加入免费插件 2、调用代码 3、使用UnityWebRequest加载路径数据

Jackson 2.x 系列【31】Spring Boot 集成之字典回写

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Jackson 版本 2.17.0 本系列Spring Boot 版本 3.2.4 源码地址&#xff1a;https://gitee.com/pearl-organization/study-jaskson-demo 文章目录 1. 场景描述2. 案例演示2.1 修改枚举2.2 定义注解…

总结一下背包里的顺序和是否逆序

1.对于01背包而言&#xff0c;一维压缩态只能物品到背包且需要逆序 2.对应多重背包而言&#xff0c;组合数物品到背包&#xff0c;排列数背包到物品&#xff0c;且都需要正序

军工单位安全内网文件导出,怎样做到严密的安全管控?

军工单位是指承担国家下达的军事装备、产品研制、生产计划任务的企、事业单位&#xff0c;主要包括电子工业部、航空工业总公司、航天工业总公司、兵器工业总公司、核工业总公司、船舶工业总公司、中国工程物理研究院及各省国防工业办公室等。 军工单位的特点主要体现在以下几个…

光伏无人机:巡检无人机解决巡检难题

随着科技的飞速发展&#xff0c;无人机技术已经广泛应用于各个领域&#xff0c;其中光伏无人机在解决光伏电站巡检难题方面发挥了重要作用。光伏无人机以其高效、精准、安全的特点&#xff0c;为光伏电站的巡检工作带来了革命性的变革。 光伏电站通常位于广阔的户外场地&#x…

【问题实操】银河高级服务器操作系统实例分享,配置hugepages启动异常

1.问题现象 某运营商国产服务器操作系统项目&#xff0c;部署Kylin-Server-0524-aarch64服务器系统&#xff0c;内核从4.19.90-24.4升级到4.19.90-25.14。在grub中配置huagepages大页内存后&#xff0c;系统在内核启动阶段黑屏&#xff0c;只显示一个光标。grub配置如下图&…

AI大模型探索之路-训练篇5:大语言模型预训练数据准备-词元化

系列文章目录&#x1f6a9; AI大模型探索之路-训练篇1&#xff1a;大语言模型微调基础认知 AI大模型探索之路-训练篇2&#xff1a;大语言模型预训练基础认知 AI大模型探索之路-训练篇3&#xff1a;大语言模型全景解读 AI大模型探索之路-训练篇4&#xff1a;大语言模型训练数据…

什么样的内外网文档摆渡,可以实现安全高效传输?

内外网文档摆渡通常指的是在内网&#xff08;公司或组织的内部网络&#xff09;和外网&#xff08;如互联网&#xff09;之间安全地传输文件的过程。这个过程需要特别注意安全性&#xff0c;因为内网往往包含敏感数据&#xff0c;直接连接内网和外网可能会带来安全风险。因此会…