ChuanhuChatGPT集成百川大模型

news2024/12/27 13:23:19

搭建步骤:

  1. 拷贝本地模型,把下载好的Baichuan2-7B-Chat拷贝到models目录下
  2. 修改modules\models\base_model.py文件,class ModelType增加Baichuan

    Baichuan = 16

    elif "baichuan" in model_name_lower:

       model_type = ModelType.Baichuan

  3. 修改modules\models\models.py文件,get_model方法增加ModelType.Baichuan

    elif model_type == ModelType.Baichuan:

        from .Baichuan import Baichuan_Client

        model = Baichuan_Client(model_name, user_name=user_name)

  4. 增加modules\models\Baichuan.py文件

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    66

    67

    68

    69

    70

    71

    72

    73

    74

    75

    76

    77

    78

    79

    80

    81

    from modelscope import snapshot_download, AutoModelForCausalLM, AutoTokenizer,GenerationConfig

    from transformers import AutoModelForCausalLM, AutoTokenizer

    from transformers.generation import GenerationConfig

    import logging

    import colorama

    from ..index_func import *

    from ..presets import *

    from ..utils import *

    from .base_model import BaseLLMModel

    from ..presets import MODEL_METADATA

    from datetime import datetime

    class Baichuan_Client(BaseLLMModel):

        def __init__(self, model_name, user_name="") -None:

            super().__init__(model_name=model_name, user=user_name)

            import torch

            from transformers import AutoModel, AutoTokenizer

            global CHATGLM_TOKENIZER, CHATGLM_MODEL

            print("__init__ Baichuan_Client")

            if CHATGLM_TOKENIZER is None or CHATGLM_MODEL is None:

                model_path = None

                if os.path.exists("models"):

                    model_dirs = os.listdir("models")

                    if model_name in model_dirs:

                        model_path = f"models/{model_name}"

                if model_path is not None:

                    model_source = model_path

                else:

                    model_source = snapshot_download(f"baichuan-inc/{model_name}", revision='v1.0.4')

                CHATGLM_TOKENIZER = AutoTokenizer.from_pretrained(

                    model_source, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16

                )

                quantified = False

                if "int4" in model_name:

                    quantified = True

                model = AutoModelForCausalLM.from_pretrained(

                    model_source, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16

                )

                model.generation_config = GenerationConfig.from_pretrained(model_source)

                model = model.eval()

                CHATGLM_MODEL = model

        def _get_glm_style_input(self):

            print("_get_glm_style_input")

            print(f"the history is: {self.history}")

            history = [x["content"for in self.history]

            query = history.pop()

            print(f"the message is: {query}")

            return history, query

        def get_answer_at_once(self):

            print("get_answer_at_once")

            history,query = self._get_glm_style_input()

            messages = []

            messages.append({'role''user''content': query})

            now = datetime.now()

            print("get_answer_at_once start"+"++++++++"+ now.strftime("%Y-%m-%d %H:%M:%S"))

            response = CHATGLM_MODEL.chat(

                CHATGLM_TOKENIZER, messages)

            now = datetime.now()

            print("get_answer_at_once end"+"++++++++"+ now.strftime("%Y-%m-%d %H:%M:%S"))

            print(f"the response is: {response}")

            return response, len(response)

        def get_answer_stream_iter(self):

            history,query = self._get_glm_style_input()

            messages = []

            messages.append({'role''user''content': query})

            result = ""

            now = datetime.now()

            print("get_answer_stream_iter start"+"++++++++"+ now.strftime("%Y-%m-%d %H:%M:%S"))

            for response in CHATGLM_MODEL.chat(

                CHATGLM_TOKENIZER,

                messages

            ):

                print(f"the response is: {response}")

                result += response

                yield result

            now = datetime.now()

            print("get_answer_stream_iter end"+"++++++++"+ now.strftime("%Y-%m-%d %H:%M:%S"))

  5. 答案回调开关控制get_answer_at_once、get_answer_stream_iter方法调用选择
  6. 执行效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1627564.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

8点法估计基础矩阵

估计基础矩阵 文章目录 估计基础矩阵8点法归一化 8点法 8点法 根据两幅图像中8个对应点对之间的关系,采用SVD求 解最小二乘方 约束:det(F) 0 假设已知N对点的对应关系: { x i , x i ′ } i 1 N \{x_i,x^{\prime}_i\}_{i1}^N {xi​,xi′​…

第一个大型汽车ITU-T车载语音通话质量实验室投入使用

中国汽车行业蓬勃发展,尤其是新能源汽车风起云涌,无论是国内还是海外需求旺盛的趋势下,除乘用车等紧凑型车外,中型汽车如MPV、小巴、小型物流车,大型汽车如重卡、泥头车等亦加入了手机互联、智驾的科技行列&#xff0c…

力扣题目:轮转数组

力扣题目:轮转数组 题目链接: 189.轮转数组 题目描述 代码思路 根据从轮转前到轮转后到数组变化,我们可以将数组元素分成两个部分,一个部分数轮转后从右边调到前面,一部分仅仅从左边向右移动。发现这个规律后,将数组…

软件工程的介绍

软件工程 这一章的内容其实还是蛮多的,大概一共有10个章节,分别是下面的一些内容,但是呢,这一章的内容其实是比较偏向文科类的,也就是说,记忆的内容其实占有很大的篇幅,在该考试科目当中呢,其实也是主要影响上午题部分的选择题的考察,基本的分值呢,在10分左右,分值占…

python自定义交叉熵损失,再和pytorch api对比

背景 我们知道,交叉熵本质上是两个概率分布之间差异的度量,公式如下 其中概率分布P是基准,我们知道H(P,Q)>0,那么H(P,Q)越小,说明Q约接近P。 损失函数本质上也是为了度量模型和完美模型的差异,因此可以…

input框添加验证(如只允许输入数字)中文输入导致显示问题的解决方案

文章目录 input框添加验证(如只允许输入数字)中文输入导致显示问题的解决方案问题描述解决办法 onCompositionStart与onCompositionEnd input框添加验证(如只允许输入数字)中文输入导致显示问题的解决方案 问题描述 测试环境:react antd input (react的事件与原生…

如何在TestNG中忽略测试用例

在这篇文章中,我们将讨论如何在TestNG中忽略测试用例。TestNG帮助我们忽略使用Test注释的情况,我们可以在不同的级别上忽略这些情况。 首先,只忽略一个测试方法或测试用例。第二,忽略一个类及其子类中的所有情况。第三个是&#…

QT中基于TCP的网络通信

QT中基于TCP的网络通信 QTcpServer公共成员函数信号 QTcpSocket公共成员函数信号 通信流程服务器端通信流程代码 客户端通信流程代码 使用Qt提供的类进行基于TCP的套接字通信需要用到两个类: QTcpServer:服务器类,用于监听客户端连接以及和客…

【算法基础实验】图论-UnionFind连通性检测之quick-find

Union-Find连通性检测之quick-find 理论基础 在图论和计算机科学中,Union-Find 或并查集是一种用于处理一组元素分成的多个不相交集合(即连通分量)的情况,并能快速回答这组元素中任意两个元素是否在同一集合中的问题。Union-Fin…

RDD编程初级实践

参考链接 spark入门实战系列--8MLlib spark 实战_mob6454cc68310b的技术博客_51CTO博客https://blog.51cto.com/u_16099212/7454034 Spark和Hadoop的安装-CSDN博客https://blog.csdn.net/weixin_64066303/article/details/138021948?spm1001.2014.3001.5501 1. spark-shell…

Linux的学习之路:22、线程(2)

摘要 本章继续讲一下线程的东西 目录 摘要 一、抢票 二、加锁保护 三、死锁 1、死锁四个必要条件 2、避免死锁 四、同步 1、常见的线程安全的情况 2、常见不可重入的情况 3、常见可重入的情况 4、可重入与线程安全联系 5、可重入与线程安全区别 一、抢票 这里回…

大模型咨询培训老师叶梓:利用知识图谱和Llama-Index增强大模型应用

大模型(LLMs)在自然语言处理领域取得了显著成就,但它们有时会产生不准确或不一致的信息,这种现象被称为“幻觉”。为了提高LLMs的准确性和可靠性,可以借助外部知识源,如知识图谱。那么我们如何通过Llama-In…

clickhouse与oracle传输数据

参考 https://github.com/ClickHouse/clickhouse-jdbc-bridge https://github.com/ClickHouse/clickhouse-jdbc-bridge/blob/master/docker/README.md clickhouse官方提供了一种方式,可以实现clickhouse与oracle之间传输数据,不仅仅是oracle&#xff0…

Java后端利用百度地图全球逆地理编码,获取地址

声明:本人是在实习项目的时候遇到的问题 一.使用Api分为四步骤全球逆地理编码 rgc 反geo检索 | 百度地图API SDK 步骤1,2自行完成 接下来去获取AK 二.申请AK 登录百度账号 点击创建应用,选择自己想用的服务,我只单选了逆地理编码&#xff…

debian gnome-desktop GUI(图形用户界面)系统

目录 🌞更新 🎨安装 🍎分配 🛋️重启 🔑通过VNC连接 debian gnome-desktop 🌞更新 sudo apt update sudo apt -y upgrade 🎨安装 sudo apt -y install task-gnome-desktop 这个过程比…

企业应该如何处理云安全问题。

企业甚至云提供商配置错误的云基础设施可能会导致多个漏洞,从而显着增加组织的攻击面。德迅云安全通过帮助企业和部署云安全的核心组件来解决这些问题。其中包括全面的安全态势、持续优化的策略、全周期风险管理、流量监控、威胁响应、风险缓解和数字资产管理。 云安…

力扣-有效的数独

请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图) 注…

codePen按钮样式学习

前言 看到codepen里面有的按钮搞得很炫酷&#xff0c;但其实也不是很难&#xff0c;就学习记录一下 逐渐出现边框 大体上来说就是当鼠标悬浮的时候触发四个transition&#xff0c;用after、before和span的after和before四个伪类做hover出来的边框 <div class"btn bt…

笔记本硬盘坏了怎么把数据弄出来 笔记本硬盘数据恢复一般需要多少钱

现在办公基本都离不开笔记本电脑&#xff0c;就连学生写作业也大多是都在电脑上完成。硬盘作为电脑存储的重要组成部分&#xff0c;承载着存储文件和各类软件的重任。如果硬盘出现故障&#xff0c;基本上这台电脑就无法正常工作&#xff0c;同时我们可能面临丢失很多重要的数据…

设计不外流,保护创意的同时锁住图纸安全!

在设计行业中&#xff0c;图纸和创意文稿的安全至关重要&#xff0c;因为它们体现了企业的创新能力和核心竞争力。华企盾DSC数据防泄密系统提供了一系列功能&#xff0c;可以有效地保护这些珍贵的设计和文档不被外泄。以下是如何利用华企盾DSC系统保障设计图纸安全的关键措施&a…